i(i>=1) 요소를 삽입할 때 이전 배열[0],array[1],…,array[i -1 ]가 정렬되었습니다. 이때 array[i-1], array[i-2],...를 비교하여 삽입 위치를 찾아 원래 위치에 배열[i]을 삽입합니다. 순서대로 뒤로 이동합니다.
데이터가 순서에 가까울수록 정렬을 직접 삽입하는 데 걸리는 시간이 줄어듭니다.
시간 복잡도: O(N^2)
공간 복잡도 O(1), 안정적인 알고리즘
직접 삽입 정렬:
public static void insertSort(int[] array){ for (int i = 1; i < array.length; i++) { int tmp=array[i]; int j=i-1; for(;j>=0;--j){ if(array[j]>tmp){ array[j+1]=array[j]; }else{ break; } } array[j+1]=tmp; } }
힐 정렬의 기본 아이디어 방법은 먼저 정수 간격을 선택하고, 정렬할 파일의 모든 레코드를 간격 그룹으로 나누고, 간격 간격이 있는 모든 숫자를 같은 그룹에 넣은 다음, 각 그룹의 숫자에 대해 직접 삽입 정렬을 수행합니다. . 그런 다음 gap=gap/2를 취하고 위의 그룹화 및 정렬 작업을 반복합니다. gap=1이면 모든 숫자가 그룹 내에서 직접 정렬됩니다.
힐 정렬은 직접 삽입 정렬을 최적화한 것입니다.
배열을 순서에 가깝게 만드는 것이 목적이므로 간격 > 1일 때 사전 정렬이 수행됩니다. 삽입 정렬은 간격이 1일 때 거의 순서가 지정된 배열을 빠르게 정렬할 수 있습니다.
Hill 정렬의 시간 복잡도는 간격을 계산하는 방법이 다양하여 계산하기 어렵기 때문에 계산하기 어렵습니다.
힐 정렬:
public static void shellSort(int[] array){ int size=array.length; //这里定义gap的初始值为数组长度的一半 int gap=size/2; while(gap>0){ //间隔为gap的直接插入排序 for (int i = gap; i < size; i++) { int tmp=array[i]; int j=i-gap; for(;j>=0;j-=gap){ if(array[j]>tmp){ array[j+gap]=array[j]; }else{ break; } } array[j+gap]=tmp; } gap/=2; } }
요소 집합에서 가장 작은 데이터 요소를 선택합니다. array[i]--array[n-1]
이 세트의 첫 번째 요소가 아닌 경우 이 세트의 첫 번째 요소로 교환하세요
나머지 세트에서 세트에 1개의 요소가 남을 때까지 위 단계를 반복하세요
시간 복잡도 : O(N^2)
공간 복잡도는 O(1), 불안정
선택 정렬:
//交换 private static void swap(int[] array,int i,int j){ int tmp=array[i]; array[i]=array[j]; array[j]=tmp; } //选择排序 public static void chooseSort(int[] array){ for (int i = 0; i < array.length; i++) { int minIndex=i;//记录最小值的下标 for (int j = i+1; j < array.length; j++) { if (array[j]<array[minIndex]) { minIndex=j; } } swap(array,i,minIndex); } }
힙 정렬의 두 가지 아이디어(예: 오름차순):
작은 루트 힙을 만들고, 힙의 최상위 요소를 꺼내서 힙이 빌 때까지 차례로 배열에 넣습니다.
큰 루트 힙을 만들고, 힙의 꼬리 요소 위치 키를 정의합니다. , 그리고 키가 힙의 상단에 도달할 때까지 요소와 키 위치(key--)의 요소를 매번 교환합니다. 이때 힙에 있는 요소의 계층적 순회는 오름차순입니다. 순서 (다음과 같음)
시간 복잡도: O(N^2)
공간 복잡도: O(N), 불안정
힙 정렬:
//向下调整 public static void shiftDown(int[] array,int parent,int len){ int child=parent*2+1; while(child<len){ if(child+1<len){ if(array[child+1]>array[child]){ child++; } } if(array[child]>array[parent]){ swap(array,child,parent); parent=child; child=parent*2+1; }else{ break; } } } //创建大根堆 private static void createHeap(int[] array){ for (int parent = (array.length-1-1)/2; parent >=0; parent--) { shiftDown(array,parent,array.length); } } //堆排序 public static void heapSort(int[] array){ //创建大根堆 createHeap(array); //排序 for (int i = array.length-1; i >0; i--) { swap(array,0,i); shiftDown(array,0,i); } }
2레벨 루프, 첫 번째 루프 레벨은 정렬할 횟수를 나타내고, 2레벨 루프는 각 패스의 비교 횟수를 나타냅니다. 여기서 버블 정렬은 각 비교 중에 최적화되었습니다. 데이터 교환 횟수를 기록하는 카운터를 정의할 수 있습니다. 교환이 없으면 데이터가 더 이상 정렬되지 않음을 의미합니다.
시간 복잡도: O(N^2)
공간 복잡도는 O(1)이며 이는 안정적인 정렬입니다.
버블 정렬:
public static void bubbleSort(int[] array){ for(int i=0;i<array.length-1;++i){ int count=0; for (int j = 0; j < array.length-1-i; j++) { if(array[j]>array[j+1]){ swap(array,j,j+1); count++; } } if(count==0){ break; } } }
어떤 선택이든 정렬됩니다. 요소 시퀀스의 요소는 정렬 코드에 따라 두 개의 하위 시퀀스로 구분됩니다. 왼쪽 하위 시퀀스의 모든 요소는 벤치마크 값보다 작습니다. 벤치마크 값보다 큰 경우 가장 왼쪽의 하위 시퀀스 모든 요소가 해당 위치에 배열될 때까지 시퀀스는 이 프로세스를 반복합니다.
시간 복잡도: 최상 O(n*logn): 정렬할 시퀀스를 매번 최대한 균등하게 나눌 수 있음
Worst O(N^2): 정렬할 시퀀스 자체가 정렬됨
공간 복잡도: 기껏해야 O(logn), 최악의 경우 O(N)입니다. 불안정한 정렬
(1) 파기 방법
데이터를 정렬할 때 빠른 정렬은 왼쪽 또는 오른쪽 하위 트리가 없는 이진 트리와 동일합니다. 이 때 공간 복잡도는 O(N)에 도달합니다. 데이터의 양을 정렬하면 스택 오버플로가 발생할 수 있습니다.
public static void quickSort(int[] array,int left,int right){ if(left>=right){ return; } int l=left; int r=right; int tmp=array[l]; while(l<r){ while(array[r]>=tmp&&l<r){ //等号不能省略,如果省略,当序列中存在相同的值时,程序会死循环 r--; } array[l]=array[r]; while(array[l]<=tmp&&l<r){ l++; } array[r]=array[l]; } array[l]=tmp; quickSort(array,0,l-1); quickSort(array,l+1,right); }
(2) 퀵 정렬 최적화
세 숫자 중 중간을 취하여 키를 선택하세요
키 값 선택과 관련하여 정렬할 순서가 맞다면 첫 번째 또는 마지막 값을 다음과 같이 선택합니다. 분할이 발생할 수 있는 키의 왼쪽이나 오른쪽이 비어 있는 경우 퀵 정렬의 공간 복잡도가 상대적으로 커지므로 스택 오버플로가 발생하기 쉽습니다. 그런 다음 세 숫자 방법을 사용하여 이 상황을 취소할 수 있습니다. 시퀀스의 첫 번째, 마지막 및 중간 요소의 중간 값이 키 값으로 사용됩니다.
//key值的优化,只在快速排序中使用,则可以为private private int threeMid(int[] array,int left,int right){ int mid=(left+right)/2; if(array[left]>array[right]){ if(array[mid]>array[left]){ return left; } return array[mid]<array[right]?right:mid; }else{ if(array[mid]<array[left]){ return left; } return array[mid]>array[right]?right:mid; } }
작은 하위 범위로 재귀할 때 삽입 정렬 사용을 고려할 수 있습니다
随着我们递归的进行,区间会变的越来越小,我们可以在区间小到一个值的时候,对其进行插入排序,这样代码的效率会提高很多。
(3)快速排序的非递归实现
//找到一次划分的下标 public static int patition(int[] array,int left,int right){ int tmp=array[left]; while(left<right){ while(left<right&&array[right]>=tmp){ right--; } array[left]=array[right]; while(left<right&&array[left]<=tmp){ left++; } array[right]=array[left]; } array[left]=tmp; return left; } //快速排序的非递归 public static void quickSort2(int[] array){ Stack<Integer> stack=new Stack<>(); int left=0; int right=array.length-1; stack.push(left); stack.push(right); while(!stack.isEmpty()){ int r=stack.pop(); int l=stack.pop(); int p=patition(array,l,r); if(p-1>l){ stack.push(l); stack.push(p-1); } if(p+1<r){ stack.push(p+1); stack.push(r); } } }
归并排序(MERGE-SORT):该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。实现序列的完全有序,需要将已经有序的子序列合并,即先让每个子序列有序,然后再将相邻的子序列段有序。若将两个有序表合并成一个有序表,称为二路归并。
时间复杂度:O(n*logN)(无论有序还是无序)
空间复杂度:O(N)。是稳定的排序。
//归并排序:递归 public static void mergeSort(int[] array,int left,int right){ if(left>=right){ return; } int mid=(left+right)/2; //递归分割 mergeSort(array,left,mid); mergeSort(array,mid+1,right); //合并 merge(array,left,right,mid); } //非递归 public static void mergeSort1(int[] array){ int gap=1; while(gap<array.length){ for (int i = 0; i < array.length; i+=2*gap) { int left=i; int mid=left+gap-1; if(mid>=array.length){ mid=array.length-1; } int right=left+2*gap-1; if(right>=array.length){ right=array.length-1; } merge(array,left,right,mid); } gap=gap*2; } } //合并:合并两个有序数组 public static void merge(int[] array,int left,int right,int mid){ int[] tmp=new int[right-left+1]; int k=0; int s1=left; int e1=mid; int s2=mid+1; int e2=right; while(s1<=e1&&s2<=e2){ if(array[s1]<=array[s2]){ tmp[k++]=array[s1++]; }else{ tmp[k++]=array[s2++]; } } while(s1<=e1){ tmp[k++]=array[s1++]; } while(s2<=e2){ tmp[k++]=array[s2++]; } for (int i = left; i <= right; i++) { array[i]=tmp[i-left]; } }
排序方法 | 最好时间复杂度 | 最坏时间复杂度 | 空间复杂度 | 稳定性 |
直接插入排序 | O(n) | O(n^2) | O(1) | 稳定 |
希尔排序 | O(n) | O(n^2) | O(1) | 不稳定 |
直接排序 | O(n^2) | O(n^2) | O(1) | 不稳定 |
堆排序 | O(nlog(2)n) | O(nlog(2)n) | O(1) | 不稳定 |
冒泡排序 | O(n) | O(n^2) | O(1) | 稳定 |
快速排序 | O(nlog(2)n) | O(n^2) | O(nlog(2)n) | 不稳定 |
归并排序 | O(nlog(2)n) | O(nlog(2)n) | O(n) | 稳定 |
위 내용은 7가지 종류의 Java 데이터 구조를 사용하는 방법의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!