>데이터 베이스 >Redis >Mac에서 Redis5 BloomFilter 설치 및 Python과 함께 사용하는 방법

Mac에서 Redis5 BloomFilter 설치 및 Python과 함께 사용하는 방법

WBOY
WBOY앞으로
2023-05-30 08:01:051075검색

Bloom 필터 설치 및 사용

Centos7의 Redis 5.x에 Bloom 필터(BloomFilter) 설치 및 사용

1 进入redis安装目录:cd /usr/local/redis-5.0.4
2. 下载插件: git clone https://github.com/RedisBloom/RedisBloom.git  
	# https://github.com/RedisBloom/RedisBloom 如果慢 可以使用外网访问
3. 进入插件目录: cd redisbloom/  (重命名之前为RedisBloom)
4. 执行: make
5. 修改 redis.conf,增加配置: loadmodule /usr/local/redis-5.0.4/redisbloom/redisbloom.so
6. 启动redis:  src/redis-server ./redis.conf
7. 连接客户端: src/redis-cli -p 6379 
8. 测试,先后执行: bf.add users francis     bf.exists users francis  
9. 更多内容可参考: https://oss.redislabs.com/redisbloom/

python 사용
1 첫 번째 방법은 기본 문을 사용하여 redis에 연결하는 것

from redis import StrictRedis
from django.conf import settings


class BfRedis:
    def __init__(self, db, host=settings.BF_REDIS_HOST, port=settings.BF_REDIS_PORT, password=settings.BF_REDIS_PASSWORD):
        self.client = StrictRedis(db=db, host=host, port=port, password=password)

    def bf_init(self, key: str, error_rate: float(), size: int):
        res = self.client.execute_command('BF.RESERVE', key, error_rate, size)
        return res

    def bf_exists(self, key, value):
        res = self.client.execute_command('BF.exists', key, value)
        return res

    def bf_add(self, key, value):
        return self.client.execute_command('BF.add', key, value)

    def bf_local_init(self, task_id, error_rate=0.0001, size=10000):
        """
        """
        key = f'bf_{task_id}'
        if self.client.exists(key):
            return True
        res = self.bf_init(key, error_rate, size)
        return res

    def bf_local_add(self, task_id, value):
        key = f'bf_{task_id}'
        res = self.bf_add(key, value)
        return res

    def bf_local_exists(self, task_id, value):
        key = f'bf_{task_id}'
        res = self.bf_exists(key, value)
        return res

    def bf_local_del(self, task_id):
        key = f'bf_{task_id}'
        res = self.client.delete(key)
        return res
# bf_redis = CrawlRedisClient(0)
  1. python 사용 도구 모듈

python2安装:pip install pybloom
python3安装:pip install pybloom-live

demo

from pybloom import BloomFilter, ScalableBloomFilter
bf = BloomFilter(capacity=10000, error_rate=0.001)
bf.add('test')
print 'test' in bf
sbf = ScalableBloomFilter(mode=ScalableBloomFilter.SMALL_SET_GROWTH)
sbf.add('dddd')
print 'ddd' in sbf

BloomFilter是一个定容的过滤器,error_rate是指最大的误报率是0.1%,而ScalableBloomFilter是一个不定容量的布隆过滤器,它可以不断添加元素。add 요소를 추가하는 방법이 있습니다. 요소가 이미 블룸 필터에 있으면 true를 반환하고 요소를 필터에 추가합니다. 요소가 필터에 있는지 확인하려면 in 연산자를 사용하면 됩니다.

위 내용은 Mac에서 Redis5 BloomFilter 설치 및 Python과 함께 사용하는 방법의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

성명:
이 기사는 yisu.com에서 복제됩니다. 침해가 있는 경우 admin@php.cn으로 문의하시기 바랍니다. 삭제