Redis 통신 프로토콜
다음 프로그램의 이해를 돕기 위해 주요 사항을 나열해 보세요.
Redis는 TCP 포트 6379(기본 포트, 구성에서 수정 가능)에서 들어오는 연결을 모니터링합니다. 클라이언트와 서버 간에 전송되는 모든 Redis 명령 또는 데이터는 rn으로 끝납니다.
Reply(서버가 클라이언트로부터 복구할 수 있는 프로토콜)
Redis는 다양한 응답 유형으로 명령에 응답합니다. 서버에서 보낸 첫 번째 바이트부터 시작하여 응답 유형을 확인할 수 있습니다.
* 한 줄 응답(상태 응답)의 경우 응답의 첫 번째 바이트는 "+"입니다.
* 응답의 오류 메시지 첫 번째 바이트는 "-"
* 정수, 답장의 첫 번째 바이트는 ":" $”
* 여러 개의 대량 답글, 답장의 첫 번째 바이트는 "*"입니다. 대량 문자열(대량 답장) )
대량 응답은 서버에서 단일 바이너리 안전 문자열을 반환하는 데 사용됩니다.
C: GET mykey
S: $6rnfoobarrn
서버는 첫 번째 응답 줄을 보냅니다. 이 줄은 "$"로 시작하고 그 뒤에 보낼 실제 바이트 수, CRLF가 뒤따르고 실제 데이터를 보냅니다. 그 다음에는 최종 CRLF에 대한 2바이트의 추가 데이터가 있습니다. 서버에서 보낸 정확한 순서는 다음과 같습니다.
"$6rnfoobarrn"
요청한 값이 존재하지 않는 경우 일괄 응답에서는 특수 값 -1을 데이터 길이로 사용합니다. 예:
C: GET nonexistingkey
S: $- 1
요청한 개체가 존재하지 않는 경우 클라이언트 라이브러리 API는 빈 문자열이 아닌 빈 개체를 반환합니다. 예를 들어 Ruby 라이브러리는 "nil"을 반환하는 반면 C 라이브러리는 NULL을 반환합니다(또는 응답 객체에 지정된 플래그를 설정합니다).
Binary
쉽게 말하면 바이너리는 포함한다는 의미입니다. 따라서 C 언어에서 처리할 때 strlen, strcpy 등의 str 함수는 문자열의 끝을 결정하는 데 사용되므로 사용할 수 없습니다.
redis 클러스터
Redis 클러스터 구축 방법은 초간단
공식 홈페이지에서도 Centos6.5를 사용하기 때문에 Redis 클러스터 구축 방법을 소개하고 있어서 더 번거로울 수 있습니다. 나아지 다.
Redis 클러스터의 데이터 샤딩
Redis 클러스터는 일관된 해싱을 사용하지 않지만 해시 슬롯 개념을 도입합니다.
Redis 클러스터에는 16384개의 해시 슬롯이 있으며, 각 키는 CRC16을 통과한 후 확인됩니다. 클러스터의 각 노드는 해시 슬롯의 일부를 담당합니다. 예를 들어 현재 클러스터에 3개의 노드가 있는 경우
* 노드 A에는 해시 슬롯 0~5500이 포함됩니다.
* 노드 B에는 다음이 포함됩니다. 해시 슬롯 5501~11000.
* 노드 C에는 해시 슬롯 11001~16384가 포함됩니다.
이 구조를 사용하면 노드를 쉽게 추가하거나 삭제할 수 있습니다. 예를 들어 새 노드 D를 추가하려면 노드에서 시작해야 합니다. A, B와 C의 일부 슬롯이 D로 이동되었습니다. 노드 A를 제거하려면 A의 슬롯을 노드 B와 C로 이동한 다음 이동한 이후로 슬롯이 없는 A 노드를 제거해야 합니다. 한 노드에서 다른 노드로의 해시 슬롯은 서비스를 중지하지 않으며, 노드의 해시 슬롯 수를 추가, 삭제 또는 변경해도 클러스터를 사용할 수 없게 되지 않습니다.
Redis 클러스터 프로토콜에서 클라이언트 및 서버 측
Redis 클러스터에서 노드는 데이터를 저장하고 클러스터 상태를 기록하는 역할을 담당합니다(올바른 노드에 대한 키 값 매핑 포함). 또한 클러스터 노드는 자동으로 다른 노드를 검색하고, 제대로 작동하지 않는 노드를 검색하고, 필요할 때 슬레이브 노드에서 마스터 노드를 선택할 수 있습니다.
이러한 작업을 수행하기 위해 모든 클러스터 노드는 TCP 연결(TCP 버스?)과 바이너리 프로토콜(클러스터 연결, 클러스터 버스)을 통해 통신합니다. 각 노드는 클러스터 버스를 통해 클러스터의 다른 모든 노드에 연결됩니다. 노드는 가십 프로토콜을 사용하여 클러스터 정보를 전파합니다. 이를 통해 새 노드를 검색하고, 핑 패킷을 보내고(모든 노드가 제대로 작동하는지 확인하기 위해), 특정 상황이 발생할 때 클러스터 메시지를 보낼 수 있습니다. 클러스터 연결은 클러스터의 메시지를 게시하거나 구독하는 데에도 사용됩니다.
클러스터 노드는 요청을 프록시할 수 없으므로 클라이언트는 리디렉션 오류 -MOVED 및 -ASK를 수신하면 명령을 다른 노드로 리디렉션합니다. 이론적으로 클라이언트는 자유롭게 클러스터의 모든 노드에 요청을 보내고 필요할 때 요청을 다른 노드로 리디렉션할 수 있으므로 클라이언트는 클러스터 상태를 저장할 필요가 없습니다. 그러나 클라이언트는 키 값과 노드 간의 매핑 관계를 캐시할 수 있으므로 명령 실행 효율성을 크게 향상시킬 수 있습니다.
-MOVED
간단히 말하면 -MOVED가 반환되면 클라이언트가 노드 A에 연결하여 키 처리를 요청하지만 실제로는 키가 실제로 노드 B에 있으므로 -MOVED가 반환되는 프로토콜입니다. -MOVED 3999 127.0.0.1:6381
-ASK의 상황을 고려할 필요가 없습니다.
C 언어로 구현된 Redis 클라이언트
코드는 다음과 같습니다:
#include <string.h>#include <sys/socket.h>#include <arpa/inet.h>#include <errno.h>#include <fcntl.h>#include <netdb.h>#include <sys/poll.h>#include <unistd.h>#include <sys/types.h>#include <stdlib.h>#include <stdio.h>ssize_t sock_write_loop( int fd, const void *vptr, size_t n ) { size_t nleft = 0; ssize_t nwritten = 0;const char *ptr; ptr = (char *) vptr; nleft = n;while( nleft > 0 ) {if( (nwritten = write(fd, ptr, nleft) ) <= 0 ) {if( errno == EINTR ) { nwritten = 0; //再次调用write }else{return -5; } } nleft = nleft - nwritten; ptr = ptr + nwritten; }return(n); }int sock_read_wait( int fd, int timeout ) {struct pollfd pfd; pfd.fd = fd; pfd.events = POLLIN; pfd.revents = 0; timeout *= 1000;for (;;) {switch( poll(&pfd, 1, timeout) ) {case -1:if( errno != EINTR ) {return (-2); }continue;case 0: errno = ETIMEDOUT;return (-1);default:if( pfd.revents & POLLIN )return (0);elsereturn (-3); } } } ssize_t sock_read_tmo( int fd, void *vptr, size_t len, int timeout ) { if( timeout > 0 && sock_read_wait(fd, timeout) < 0 )return (-1);elsereturn (read(fd, vptr, len)); }int sock_connect_nore(const char *IPaddr , int port , int timeout) { // char temp[4096];int sock_fd = 0, n = 0, errcode = 0;struct sockaddr_in servaddr;if( IPaddr == NULL ) {return -1; }if( (sock_fd = socket(AF_INET, SOCK_STREAM, 0) ) < 0 ) {return -1; } memset(&servaddr, 0, sizeof(servaddr)); servaddr.sin_family = AF_INET; servaddr.sin_port = htons(port);//changed by navy 2003.3.3 for support domain addr//if( (servaddr.sin_addr.s_addr = inet_addr(IPaddr) ) == -1 )if( (errcode = inet_pton(AF_INET, IPaddr, &servaddr.sin_addr) ) <= 0 ) {//added by navy 2003.3.31 for support domain addrstruct hostent* pHost = NULL, host;char sBuf[2048], sHostIp[17];int h_errnop = 0; memset(&host, 0, sizeof(host)); memset(sBuf, 0, sizeof(sBuf)); memset(sHostIp, 0 , sizeof(sHostIp)); pHost = &host; #ifdef _SOLARIS_PLAT//solarisif( (gethostbyname_r(IPaddr, pHost, sBuf, sizeof(sBuf), &h_errnop) == NULL) || #else//linuxif( (gethostbyname_r(IPaddr, pHost, sBuf, sizeof(sBuf), &pHost, &h_errnop) != 0) || #endif(pHost == NULL) ) { close(sock_fd);return -1; }if( pHost->h_addrtype != AF_INET && pHost->h_addrtype != AF_INET6 ) { close(sock_fd);return -1; }//目前仅取第一个IP地址if( (inet_ntop(pHost->h_addrtype, *(pHost->h_addr_list), sHostIp, sizeof(sHostIp)) ) == NULL ) { close(sock_fd);return -1; } if( (errcode = inet_pton(AF_INET, sHostIp, &servaddr.sin_addr) ) <= 0 ) { close(sock_fd); return -1; }//end added by navy 2003.3.31 }if( (errcode = sock_timed_connect(sock_fd, (struct sockaddr *)&servaddr, sizeof(servaddr), timeout) ) < 0 ) { close(sock_fd); return -1; }return sock_fd; }int sock_connect(const char *IPaddr , int port , int timeout) {char temp[4096];int sock_fd = 0, n = 0, errcode = 0;struct sockaddr_in servaddr;if( IPaddr == NULL ) {return -1; }if( (sock_fd = socket(AF_INET, SOCK_STREAM, 0) ) < 0 ) {return -1; } memset(&servaddr, 0, sizeof(servaddr)); servaddr.sin_family = AF_INET; servaddr.sin_port = htons(port);//changed by navy 2003.3.3 for support domain addr//if( (servaddr.sin_addr.s_addr = inet_addr(IPaddr) ) == -1 )if( (errcode = inet_pton(AF_INET, IPaddr, &servaddr.sin_addr) ) <= 0 ) {//added by navy 2003.3.31 for support domain addrstruct hostent* pHost = NULL, host;char sBuf[2048], sHostIp[17];int h_errnop = 0; memset(&host, 0, sizeof(host)); memset(sBuf, 0, sizeof(sBuf)); memset(sHostIp, 0 , sizeof(sHostIp)); pHost = &host; #ifdef _SOLARIS_PLAT//solarisif( (gethostbyname_r(IPaddr, pHost, sBuf, sizeof(sBuf), &h_errnop) == NULL) || #else//linuxif( (gethostbyname_r(IPaddr, pHost, sBuf, sizeof(sBuf), &pHost, &h_errnop) != 0) || #endif(pHost == NULL) ) { close(sock_fd);return -1; }if( pHost->h_addrtype != AF_INET && pHost->h_addrtype != AF_INET6 ) { close(sock_fd);return -1; }//目前仅取第一个IP地址if( (inet_ntop(pHost->h_addrtype, *(pHost->h_addr_list), sHostIp, sizeof(sHostIp)) ) == NULL ) { close(sock_fd);return -1; } if( (errcode = inet_pton(AF_INET, sHostIp, &servaddr.sin_addr) ) <= 0 ) { close(sock_fd); return -1; }//end added by navy 2003.3.31 }if( (errcode = sock_timed_connect(sock_fd, (struct sockaddr *)&servaddr, sizeof(servaddr), timeout) ) < 0 ) { close(sock_fd); return -1; } n = sock_read_tmo(sock_fd, temp, 4096, timeout);//一般错误if( n <= 0 ) { close(sock_fd); sock_fd = -1; }return sock_fd; }int sock_non_blocking(int fd, int on) {int flags;if ((flags = fcntl(fd, F_GETFL, 0)) < 0){return -10; }if (fcntl(fd, F_SETFL, on ? flags | O_NONBLOCK : flags & ~O_NONBLOCK) < 0){return -10; }return 0; }int sock_write_wait(int fd, int timeout) {struct pollfd pfd; pfd.fd = fd; pfd.events = POLLOUT; pfd.revents = 0; timeout *= 1000;for (;;) {switch( poll(&pfd, 1, timeout) ) {case -1:if( errno != EINTR ) {return (-2); }continue;case 0: errno = ETIMEDOUT;return (-1);default:if( pfd.revents & POLLOUT )return (0);elsereturn (-3); } } }int sock_timed_connect(int sock, struct sockaddr * sa, int len, int timeout) {int error = 0; socklen_t error_len; sock_non_blocking(sock, 1);if( connect(sock, sa, len) == 0 ) { sock_non_blocking(sock, 0);return (0); }if( errno != EINPROGRESS ) { sock_non_blocking(sock, 0);return (-1); }/* * A connection is in progress. Wait for a limited amount of time for * something to happen. If nothing happens, report an error. */if( sock_write_wait(sock, timeout) != 0) { sock_non_blocking(sock, 0);return (-2); }/* * Something happened. Some Solaris 2 versions have getsockopt() itself * return the error, instead of returning it via the parameter list. */error = 0; error_len = sizeof(error);if( getsockopt(sock, SOL_SOCKET, SO_ERROR, (char *) &error, &error_len) != 0 ) { sock_non_blocking(sock, 0);return (-3); }if( error ) { errno = error; sock_non_blocking(sock, 0);return (-4); } sock_non_blocking(sock, 0);/* * No problems. */return (0); }static int check_ip_in_list(const char *ip, char *iplist) { char *token = NULL;char *saveptr = NULL; token = strtok_r(iplist, ",", &saveptr);while(token != NULL) { char *ptmp = NULL; char *ip_mask = strtok_r(token, "/", &ptmp);if(!ip_mask) return -1; char *ip_bit = strtok_r(NULL, "/", &ptmp); if(ip_bit) {int mask_bit = atoi(ip_bit);if(mask_bit < 0 || mask_bit >32)continue; unsigned long addr[4] = { 0 }; sscanf( ip_mask, "%lu.%lu.%lu.%lu", addr, addr + 1, addr + 2, addr + 3 ); unsigned long vl1 = addr[0] << 24 | addr[1] << 16 | addr[2] << 8 | addr[3]; sscanf( ip, "%lu.%lu.%lu.%lu", addr, addr + 1, addr + 2, addr + 3 ); unsigned long vl2 = addr[0] << 24 | addr[1] << 16 | addr[2] << 8 | addr[3]; vl1 = ( vl1 >> ( 32 - mask_bit ) ); vl2 = ( vl2 >> ( 32 - mask_bit ) );if( vl1 == vl2 ) return 1; }else{if(strcmp(ip,ip_mask) == 0) return 1; } token = strtok_r(NULL, ",", &saveptr); } return 0; }static int check_ip_in_redis(const char *redis_host, const char *ip,const char *rq_pro) {char buf[128];int loops = 0; strcpy(buf, redis_host); do{ loops ++;char *ptmp = NULL;char *host = strtok_r(buf, ":", &ptmp);if(!host) return -1;char *s_port = strtok_r(NULL, ":", &ptmp);if(!s_port) return -1;int port = atoi(s_port);char respone[40] = {0};int sock_fd = -1;if((sock_fd = sock_connect_nore(host, port, 5))<0)return -1;if(sock_write_loop(sock_fd, rq_pro, strlen(rq_pro)) != strlen(rq_pro)) { close(sock_fd);return -1; }if(sock_read_tmo(sock_fd, respone, sizeof(respone)-1, 5)<=0) { close(sock_fd);return -1; } if(strncmp(":0", respone, 2) == 0) { close(sock_fd);return 0; } else if(strncmp(":1", respone, 2) == 0) { close(sock_fd);return 1; } else if(strncmp("$", respone, 1) == 0) { int data_size = 0; int ret = 0;char *data_line = strstr(respone,"rn");if(!data_line) { close(sock_fd);return -1; } data_line = data_line+2; data_size = atoi(respone+1);if(data_size == -1) { close(sock_fd);return 0; }if(strlen(data_line) == data_size+2) { printf("line = %d, data_line = %sn",__LINE__,data_line); ret=check_ip_in_list(ip, data_line); close(sock_fd);return ret; }char *data = calloc(data_size+3,1);if(!data) { close(sock_fd);return -1; } strcpy(data,data_line);int read_size = strlen(data);int left_size = data_size + 2 - read_size;while(left_size > 0) {int nread = sock_read_tmo(sock_fd, data+read_size, left_size, 5);if(nread<=0) {free(data); close(sock_fd); return -1; } read_size += nread; left_size -= nread; } close(sock_fd); printf("line = %d, data = %sn",__LINE__,data); ret=check_ip_in_list(ip, data);free(data);return ret; } else if(strncmp("-MOVED", respone, 6) == 0) { close(sock_fd);char *p = strchr(respone, ' ');if(p == NULL)return -1; p = strchr(p+1, ' ');if(p == NULL)return -1; strcpy(buf, p+1); }else{ close(sock_fd);return -1; } }while(loops < 2);return -1; }int main(int argc,char *argv[]) {if(argc != 2) { printf("please input ipn");return -1; } const char *redis_ip = "127.0.0.1:7002";const char *domain = "test.com";char exist_pro[128] = {0};char get_pro[128] = {0}; snprintf(exist_pro,sizeof(exist_pro),"EXISTS test|%s|%srn",domain,"127.0.0.1"); snprintf(get_pro,sizeof(get_pro),"GET test_%srn",domain);int loops = 0;int ret = 0;do{ loops ++; ret = check_ip_in_redis(redis_ip, argv[1],exist_pro);if(ret == 0) ret = check_ip_in_redis(redis_ip, argv[1],get_pro); }while(loops < 3 && ret < 0); printf("line = %d, ret = %dn",__LINE__,ret);return ret; }
c_redis_cli.c
가장 중요한 것은 check_ip_in_redis 함수이고, 나머지는 소켓 캡슐화입니다.
Python은 redis 클라이언트를 구현합니다
#!/usr/bin/pythonimport sys import socketdef main(argv):if(len(argv) != 3):print "please input domain ip!"returnhost = "192.168.188.47" port = 7002while 1: s = socket.socket() s.connect((host, port)) cmd = 'set %s_white_ip %srn' % (argv[1],argv[2]) s.send(cmd) res = s.recv(32) s.close() if res[0] == "+":print "set domain white ip suc!"return elif res[0:6] == "-MOVED": list = res.split(" ") ip_list = list[2].split(":") host = ip_list[0] port = int(ip_list[1]) else:print "set domain white ip error!"return if __name__ == "__main__": main(sys.argv)
위 내용은 Python을 사용하여 Redis 클러스터를 빠르게 구축하는 방법의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

Redis는 고성능과 유연성을 제공하는 NOSQL 데이터베이스입니다. 1) 대규모 데이터 및 높은 동시성을 처리하는 데 적합한 키 가치 쌍을 통해 데이터를 저장합니다. 2) 메모리 저장 및 단일 스레드 모델은 빠른 읽기 및 쓰기 및 원자력을 보장합니다. 3) RDB 및 AOF 메커니즘을 사용하여 데이터를 지속하여 고 가용성 및 스케일 아웃을 지원합니다.

Redis는 주로 데이터베이스, 캐시 및 메시지 중개인으로 사용되는 메모리 데이터 구조 스토리지 시스템입니다. 핵심 기능에는 단일 스레드 모델, I/O 멀티플렉싱, 지속 메커니즘, 복제 및 클러스터링 기능이 포함됩니다. Redis는 일반적으로 캐싱, 세션 저장 및 메시지 대기열을위한 실제 응용 프로그램에 사용됩니다. 올바른 데이터 구조를 선택하고 파이프 라인 및 트랜잭션을 사용하여 모니터링 및 튜닝을 통해 성능을 크게 향상시킬 수 있습니다.

Redis와 SQL 데이터베이스의 주요 차이점은 Redis가 고성능 및 유연성 요구 사항에 적합한 메모리 데이터베이스라는 것입니다. SQL 데이터베이스는 관계형 데이터베이스로 복잡한 쿼리 및 데이터 일관성 요구 사항에 적합합니다. 구체적으로, 1) Redis는 고속 데이터 액세스 및 캐싱 서비스를 제공하고 캐싱 및 실시간 데이터 처리에 적합한 여러 데이터 유형을 지원합니다. 2) SQL 데이터베이스는 테이블 구조를 통한 데이터를 관리하고 복잡한 쿼리 및 트랜잭션 처리를 지원하며 데이터 일관성이 필요한 전자 상거래 및 금융 시스템과 같은 시나리오에 적합합니다.

redisactsasbothadatastoreandaservice.1) asadatastore, itusesin-memorystorageforfastoperations, 지원을 지원합니다

redis 与其他数据库相比 与其他数据库相比, 与其他数据库相比 : 1) 速度极快 速度极快 速度极快, 读写操作通常在微秒级别; 2) 支持丰富的数据结构和操作; 3) 灵活的使用场景 3) 灵活的使用场景 灵活的使用场景 灵活的使用场景 灵活的使用场景 灵活的使用场景 灵活的使用场景 灵活的使用场景 灵活的使用场景 灵活的使用场景 灵活的使用场景 灵活的使用场景 灵活的使用场景 灵活的使用场景 灵活的使用场景 灵活的使用场景 灵活的使用场景 灵活的使用场景 灵活的使用场景 灵活的使用场景 灵活的使用场景 3) redis 또는 기타 데이터베이스를 선택할 때 특정 요구 사항과 시나리오에 따라 다릅니다. Redis는 고성능 및 저도가 낮은 응용 프로그램에서 잘 수행됩니다.

Redis는 데이터 저장 및 관리에서 핵심적인 역할을하며 여러 데이터 구조 및 지속 메커니즘을 통해 현대 애플리케이션의 핵심이되었습니다. 1) Redis는 문자열, 목록, 컬렉션, 주문 컬렉션 및 해시 테이블과 같은 데이터 구조를 지원하며 캐시 및 복잡한 비즈니스 로직에 적합합니다. 2) RDB와 AOF의 두 가지 지속 방법을 통해 Redis는 신뢰할 수있는 스토리지 및 데이터의 빠른 복구를 보장합니다.

Redis는 대규모 데이터의 효율적인 저장 및 액세스에 적합한 NOSQL 데이터베이스입니다. 1.Redis는 여러 데이터 구조를 지원하는 오픈 소스 메모리 데이터 구조 스토리지 시스템입니다. 2. 캐싱, 세션 관리 등에 적합한 매우 빠른 읽기 및 쓰기 속도를 제공합니다. 3. REDIS는 RDB 및 AOF를 통해 지속성을 지원하고 데이터 보안을 보장합니다. 4. 사용 예제에는 기본 키 값 쌍 작업 및 고급 수집 중복 제거 기능이 포함됩니다. 5. 일반적인 오류에는 연결 문제, 데이터 유형 불일치 및 메모리 오버플로가 포함되므로 디버깅에주의를 기울여야합니다. 6. 성능 최적화 제안에는 적절한 데이터 구조 선택 및 메모리 제거 전략 설정이 포함됩니다.

실제 세계에서 Redis의 애플리케이션에는 다음이 포함됩니다. 1. 캐시 시스템으로서 데이터베이스 쿼리를 가속화, 2. 웹 응용 프로그램의 세션 데이터를 저장하려면 3. 실시간 순위를 구현하려면 메시지 전달을 메시지 큐로 단순화합니다. Redis의 다목적 성과 고성능은 이러한 시나리오에서 빛을 발합니다.


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

Atom Editor Mac 버전 다운로드
가장 인기 있는 오픈 소스 편집기

드림위버 CS6
시각적 웹 개발 도구

에디트플러스 중국어 크랙 버전
작은 크기, 구문 강조, 코드 프롬프트 기능을 지원하지 않음

Dreamweaver Mac版
시각적 웹 개발 도구

SublimeText3 영어 버전
권장 사항: Win 버전, 코드 프롬프트 지원!
