1. 반복자(foreach)
1. 반복 가능한 객체
__iter__
메서드가 내장된 객체를 반복 가능한 객체라고 합니다. __iter__
方法的都叫可迭代的对象。
Python内置str、list、tuple、dict、set、file都是可迭代对象。
x = 1.__iter__ # SyntaxError: invalid syntax # 以下都是可迭代的对象 name = 'nick'.__iter__ print(type(name)) # 'method-wrapper'>
2、迭代器对象
执行可迭代对象的__iter__
方法,拿到的返回值就是迭代器对象。
只有字符串和列表都是依赖索引取值的,而其他的可迭代对象都是无法依赖索引取值的,只能使用迭代器对象。
内置有
__iter__
方法,执行该方法会拿到迭代器本身。-
内置
Python의 내장 str, list, tuple, dict, set 및 file은 모두 반복 가능한 객체입니다.__next__
s = 'hello' iter_s = s.__iter__() print(type(iter_s)) # 'str_iterator'> iter_s为迭代器对象 while True: try: print(iter_s.__next__()) except StopIteration: break #hello2. Iterator 객체iterable 객체의
__iter__
메서드를 실행하면 반환값이 iterator 객체가 됩니다. 문자열과 목록만 인덱스 값에 의존하는 반면, 다른 반복 가능한 객체는 인덱스 값에 의존할 수 없으며 반복자 객체만 사용할 수 있습니다.
내장된 __iter__
메소드가 있으며, 이 메소드를 실행하면 반복자 자체를 얻을 수 있습니다.
내장 __next__
메서드, 이 메서드를 실행하면 반복자 개체의 값을 얻을 수 있습니다. -
s = 'hello' iter_s = iter(s) # 创建迭代器对象 print(type(iter_s)) # iter_s为迭代器对象 while True: try: print(next(iter_s)) # 输出迭代器的下一个元素 except StopIteration: break # hello
3. Iterator에는 iter()와 next()라는 두 가지 기본 메서드가 있습니다.
#str name = 'nick' for x in name: print(x) #list for x in [None, 3, 4.5, "foo", lambda: "moo", object, object()]: print("{0} ({1})".format(x, type(x))) #dict d = { '1': 'tasty', '2': 'the best', '3 sprouts': 'evil', '4': 'pretty good' } for sKey in d: print("{0} are {1}".format(sKey, d[sKey])) #file f = open('32.txt', 'r', encoding='utf-8') for x in f: print(x) f.close()
class MyNumbers: def __iter__(self): self.a = 1 return self def __next__(self): if self.a <= 20: x = self.a self.a += 1 return x else: raise StopIteration myclass = MyNumbers() myiter = iter(myclass) for x in myiter: print(x)5. 반복자 구현(__next__ 및 __iter__)
class Range: def __init__(self, n, stop, step): self.n = n self.stop = stop self.step = step def __next__(self): if self.n >= self.stop: raise StopIteration x = self.n self.n += self.step return x def __iter__(self): return self for i in Range(1, 7, 3): print(i) #1 #41, 시뮬레이션된 범위
class Fib: def __init__(self): self._a = 0 self._b = 1 def __iter__(self): return self def __next__(self): self._a, self._b = self._b, self._a + self._b return self._a f1 = Fib() for i in f1: if i > 100: break print('%s ' % i, end='') # 1 1 2 3 5 8 13 21 34 55 892, 피보나치 수열
import sys def fibonacci(n): # 函数 - 斐波那契 a, b, counter = 0, 1, 0 while True: if counter > n: return yield a a, b = b, a + b counter += 1 f = fibonacci(10) #f 是一个生成器 print(type(f)) # 'generator'> while True: try: print(next(f), end=" ") except StopIteration: sys.exit()two , 생성기
- 1, Yield파이썬에서는 Yield를 사용하는 함수를 제너레이터라고 합니다.
- 제너레이터는 반복자를 반환하는 특수 함수이며 반복 작업에만 사용할 수 있습니다. 즉, 생성자는 반복자입니다. 실행을 위해 생성기를 호출하는 과정에서 Yield를 만날 때마다 함수는 일시 중지하고 현재 실행 중인 모든 정보를 저장하고 Yield 값을 반환하며 다음 번 next() 메서드에서는 현재 위치에서 계속 실행됩니다. 실행됩니다.
- yield
- 뒤에는 여러 값이 올 수 있지만(모든 유형 가능) 반환되는 값은 튜플 유형입니다.
- 반복자를 사용자 정의하는 방법을 제공합니다
def my_range(start, stop, step=1): while start < stop: yield start start += 1 g = my_range(0, 3) print(f"list(g): {list(g)}")yield 및 반환: 동일: 둘 다 in입니다. 함수는 값을 반환할 수 있으며 반환 값의 유형이나 개수에는 제한이 없습니다 차이점: return은 한 번만 값을 반환할 수 있으며, Yield는 여러 값을 반환할 수 있습니다🎜🎜🎜🎜2. ) 방법 🎜
def range(*args, **kwargs): if not kwargs: if len(args) == 1: count = 0 while count < args[0]: yield count count += 1 if len(args) == 2: start, stop = args while start < stop: yield start start += 1 if len(args) == 3: start, stop, step = args while start < stop: yield start start += step else: step = 1 if len(args) == 1: start = args[0] if len(args) == 2: start, stop = args for k, v in kwargs.items(): if k not in ['start', 'step', 'stop']: raise ('参数名错误') if k == 'start': start = v elif k == 'stop': stop = v elif k == 'step': step = v while start < stop: yield start start += step for i in range(3): print(i) # 0,1,2 for i in range(99, 101): print(i) # 99,100 for i in range(1, 10, 3): print(i) # 1,4,7 for i in range(1, step=2, stop=5): print(i) # 1,3 for i in range(1, 10, step=2): print(i) # 1,3,5,7,9🎜복잡한 버전: 🎜
t = (i for i in range(10)) print(t) # <generator object at 0x00000000026907B0> print(next(t)) # 0 print(next(t)) # 1🎜3. 생성기 표현식(i.for .in)🎜🎜리스트 이해의 []를 ()로 바꾸면 생성기 표현식을 얻을 수 있습니다. 🎜🎜장점: 목록 이해와 비교하여 메모리를 절약할 수 있으며 한 번에 하나의 값만 메모리에 생성합니다.🎜
with open('32.txt', 'r', encoding='utf8') as f: nums = [len(line) for line in f] # 列表推导式相当于直接给你一筐蛋 print(max(nums)) # 2 with open('32.txt', 'r', encoding='utf8') as f: nums = (len(line) for line in f) # 生成器表达式相当于给你一只老母鸡。 print(max(nums)) # ValueError: I/O operation on closed file.🎜예: 🎜rrreee
위 내용은 Python에서 반복자와 생성기를 사용하는 방법의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

하루에 2 시간 동안 파이썬을 배우는 것으로 충분합니까? 목표와 학습 방법에 따라 다릅니다. 1) 명확한 학습 계획을 개발, 2) 적절한 학습 자원 및 방법을 선택하고 3) 실습 연습 및 검토 및 통합 연습 및 검토 및 통합,이 기간 동안 Python의 기본 지식과 고급 기능을 점차적으로 마스터 할 수 있습니다.

웹 개발에서 Python의 주요 응용 프로그램에는 Django 및 Flask 프레임 워크 사용, API 개발, 데이터 분석 및 시각화, 머신 러닝 및 AI 및 성능 최적화가 포함됩니다. 1. Django 및 Flask 프레임 워크 : Django는 복잡한 응용 분야의 빠른 개발에 적합하며 플라스크는 소형 또는 고도로 맞춤형 프로젝트에 적합합니다. 2. API 개발 : Flask 또는 DjangorestFramework를 사용하여 RESTFULAPI를 구축하십시오. 3. 데이터 분석 및 시각화 : Python을 사용하여 데이터를 처리하고 웹 인터페이스를 통해 표시합니다. 4. 머신 러닝 및 AI : 파이썬은 지능형 웹 애플리케이션을 구축하는 데 사용됩니다. 5. 성능 최적화 : 비동기 프로그래밍, 캐싱 및 코드를 통해 최적화

Python은 개발 효율에서 C보다 낫지 만 C는 실행 성능이 높습니다. 1. Python의 간결한 구문 및 풍부한 라이브러리는 개발 효율성을 향상시킵니다. 2.C의 컴파일 유형 특성 및 하드웨어 제어는 실행 성능을 향상시킵니다. 선택할 때는 프로젝트 요구에 따라 개발 속도 및 실행 효율성을 평가해야합니다.

Python의 실제 응용 프로그램에는 데이터 분석, 웹 개발, 인공 지능 및 자동화가 포함됩니다. 1) 데이터 분석에서 Python은 Pandas 및 Matplotlib를 사용하여 데이터를 처리하고 시각화합니다. 2) 웹 개발에서 Django 및 Flask 프레임 워크는 웹 응용 프로그램 생성을 단순화합니다. 3) 인공 지능 분야에서 Tensorflow와 Pytorch는 모델을 구축하고 훈련시키는 데 사용됩니다. 4) 자동화 측면에서 파이썬 스크립트는 파일 복사와 같은 작업에 사용할 수 있습니다.

Python은 데이터 과학, 웹 개발 및 자동화 스크립팅 필드에 널리 사용됩니다. 1) 데이터 과학에서 Python은 Numpy 및 Pandas와 같은 라이브러리를 통해 데이터 처리 및 분석을 단순화합니다. 2) 웹 개발에서 Django 및 Flask 프레임 워크를 통해 개발자는 응용 프로그램을 신속하게 구축 할 수 있습니다. 3) 자동 스크립트에서 Python의 단순성과 표준 라이브러리가 이상적입니다.

Python의 유연성은 다중 파리가 지원 및 동적 유형 시스템에 반영되며, 사용 편의성은 간단한 구문 및 풍부한 표준 라이브러리에서 나옵니다. 유연성 : 객체 지향, 기능 및 절차 프로그래밍을 지원하며 동적 유형 시스템은 개발 효율성을 향상시킵니다. 2. 사용 편의성 : 문법은 자연 언어에 가깝고 표준 라이브러리는 광범위한 기능을 다루며 개발 프로세스를 단순화합니다.

Python은 초보자부터 고급 개발자에 이르기까지 모든 요구에 적합한 단순성과 힘에 호의적입니다. 다목적 성은 다음과 같이 반영됩니다. 1) 배우고 사용하기 쉽고 간단한 구문; 2) Numpy, Pandas 등과 같은 풍부한 라이브러리 및 프레임 워크; 3) 다양한 운영 체제에서 실행할 수있는 크로스 플랫폼 지원; 4) 작업 효율성을 향상시키기위한 스크립팅 및 자동화 작업에 적합합니다.

예, 하루에 2 시간 후에 파이썬을 배우십시오. 1. 합리적인 학습 계획 개발, 2. 올바른 학습 자원을 선택하십시오. 3. 실습을 통해 학습 된 지식을 통합하십시오. 이 단계는 짧은 시간 안에 Python을 마스터하는 데 도움이 될 수 있습니다.


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

SublimeText3 Linux 새 버전
SublimeText3 Linux 최신 버전

에디트플러스 중국어 크랙 버전
작은 크기, 구문 강조, 코드 프롬프트 기능을 지원하지 않음

PhpStorm 맥 버전
최신(2018.2.1) 전문 PHP 통합 개발 도구

MinGW - Windows용 미니멀리스트 GNU
이 프로젝트는 osdn.net/projects/mingw로 마이그레이션되는 중입니다. 계속해서 그곳에서 우리를 팔로우할 수 있습니다. MinGW: GCC(GNU Compiler Collection)의 기본 Windows 포트로, 기본 Windows 애플리케이션을 구축하기 위한 무료 배포 가능 가져오기 라이브러리 및 헤더 파일로 C99 기능을 지원하는 MSVC 런타임에 대한 확장이 포함되어 있습니다. 모든 MinGW 소프트웨어는 64비트 Windows 플랫폼에서 실행될 수 있습니다.

ZendStudio 13.5.1 맥
강력한 PHP 통합 개발 환경
