찾다
Javajava지도 시간springboot에서 듀얼 카프카를 구성하는 방법

Springboot는 듀얼 Kafka를 구성합니다

spring boot 2.0.8을 사용합니다.RELEASE 버전

Maven kafka jar를 도입하고 두 개의 kafka를 준비합니다.

<dependency>
    <groupId>org.springframework.kafka</groupId>
    <artifactId>spring-kafka</artifactId>
</dependency>

yml 구성 파일 구성

spring:
  kafka:
    bootstrap-servers: 180.167.180.242:9092 #kafka的访问地址,多个用","隔开
    consumer:
      enable-auto-commit: true
      group-id: kafka #群组ID
  outkafka:
    bootstrap-servers: localhost:9092 #kafka的访问地址,多个用","隔开
    consumer:
      enable-auto-commit: true
      group-id: kafka_1 #群组ID

KafkaConfig 클래스 구성

import java.util.HashMap;
import java.util.Map;
 
import org.apache.kafka.clients.consumer.ConsumerConfig;
import org.apache.kafka.clients.producer.ProducerConfig;
import org.apache.kafka.common.serialization.StringDeserializer;
import org.apache.kafka.common.serialization.StringSerializer;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.context.annotation.Primary;
import org.springframework.kafka.annotation.EnableKafka;
import org.springframework.kafka.config.ConcurrentKafkaListenerContainerFactory;
import org.springframework.kafka.config.KafkaListenerContainerFactory;
import org.springframework.kafka.core.ConsumerFactory;
import org.springframework.kafka.core.DefaultKafkaConsumerFactory;
import org.springframework.kafka.core.DefaultKafkaProducerFactory;
import org.springframework.kafka.core.KafkaTemplate;
import org.springframework.kafka.core.ProducerFactory;
import org.springframework.kafka.listener.ConcurrentMessageListenerContainer;
 
@Configuration
@EnableKafka
public class KafkaConfig {
    @Value("${spring.kafka.bootstrap-servers}")
    private String innerServers;
    @Value("${spring.kafka.consumer.group-id}")
    private String innerGroupid;
    @Value("${spring.kafka.consumer.enable-auto-commit}")
    private String innerEnableAutoCommit;
 
    @Bean
    @Primary//理解为默认优先选择当前容器下的消费者工厂
    KafkaListenerContainerFactory<ConcurrentMessageListenerContainer<Integer, String>> kafkaListenerContainerFactory() {
        ConcurrentKafkaListenerContainerFactory<Integer, String> factory = new ConcurrentKafkaListenerContainerFactory<>();
        factory.setConsumerFactory(consumerFactory());
        factory.setConcurrency(3);
        factory.getContainerProperties().setPollTimeout(3000);
        return factory;
    }
 
    @Bean//第一个消费者工厂的bean
    public ConsumerFactory<Integer, String> consumerFactory() {
        return new DefaultKafkaConsumerFactory<>(consumerConfigs());
    }
 
    @Bean
    public Map<String, Object> consumerConfigs() {
        Map<String, Object> props = new HashMap<>();
        props.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, innerServers);
        props.put(ConsumerConfig.GROUP_ID_CONFIG, innerGroupid);
        props.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, innerEnableAutoCommit);
//        props.put(ConsumerConfig.AUTO_COMMIT_INTERVAL_MS_CONFIG, "100");
//        props.put(ConsumerConfig.SESSION_TIMEOUT_MS_CONFIG, "15000");
        props.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class);
        props.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class);
        return props;
    }
    
    @Bean //生产者工厂配置
    public ProducerFactory<String, String> producerFactory() {
        return new DefaultKafkaProducerFactory<>(senderProps());
    }
    
    @Bean //kafka发送消息模板
    public KafkaTemplate<String, String> kafkaTemplate() {
        return new KafkaTemplate<String, String>(producerFactory());
    }
    
    /**
     * 生产者配置方法
     *
     * 生产者有三个必选属性
     * <p>
     * 1.bootstrap.servers broker地址清单,清单不要包含所有的broker地址,
     * 生产者会从给定的broker里查找到其他broker的信息。不过建议至少提供两个broker信息,一旦 其中一个宕机,生产者仍能能够连接到集群上。
     * </p>
     * <p>
     * 2.key.serializer broker希望接收到的消息的键和值都是字节数组。 生产者用对应的类把键对象序列化成字节数组。
     * </p>
     * <p>
     * 3.value.serializer 值得序列化方式
     * </p>
     *
     *
     * @return
     */
    private Map<String, Object> senderProps() {
        Map<String, Object> props = new HashMap<>();
        props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, innerServers);
        /**
         * 当从broker接收到的是临时可恢复的异常时,生产者会向broker重发消息,但是不能无限
         * 制重发,如果重发次数达到限制值,生产者将不会重试并返回错误。
         * 通过retries属性设置。默认情况下生产者会在重试后等待100ms,可以通过 retries.backoff.ms属性进行修改
         */
        props.put(ProducerConfig.RETRIES_CONFIG, 0);
        /**
         * 在考虑完成请求之前,生产者要求leader收到的确认数量。这可以控制发送记录的持久性。允许以下设置:
         * <ul>
         * <li>
         * <code> acks = 0 </ code>如果设置为零,则生产者将不会等待来自服务器的任何确认。该记录将立即添加到套接字缓冲区并视为已发送。在这种情况下,无法保证服务器已收到记录,并且
         * <code>retries </ code>配置将不会生效(因为客户端通常不会知道任何故障)。为每条记录返回的偏移量始终设置为-1。
         * <li> <code> acks = 1 </code>
         * 这意味着leader会将记录写入其本地日志,但无需等待所有follower的完全确认即可做出回应。在这种情况下,
         * 如果leader在确认记录后立即失败但在关注者复制之前,则记录将丢失。
         * <li><code> acks = all </code>
         * 这意味着leader将等待完整的同步副本集以确认记录。这保证了只要至少一个同步副本仍然存活,记录就不会丢失。这是最强有力的保证。
         * 这相当于acks = -1设置
         */
        props.put(ProducerConfig.ACKS_CONFIG, "1");
        /**
         * 当有多条消息要被发送到统一分区是,生产者会把他们放到统一批里。kafka通过批次的概念来 提高吞吐量,但是也会在增加延迟。
         */
        // 以下配置当缓存数量达到16kb,就会触发网络请求,发送消息
//        props.put(ProducerConfig.BATCH_SIZE_CONFIG, 16384);
        // 每条消息在缓存中的最长时间,如果超过这个时间就会忽略batch.size的限制,由客户端立即将消息发送出去
//        props.put(ProducerConfig.LINGER_MS_CONFIG, 1);
//        props.put(ProducerConfig.BUFFER_MEMORY_CONFIG, 33554432);
        props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class);
        props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, StringSerializer.class);
        return props;
    }
    
    @Value("${spring.outkafka.bootstrap-servers}")
    private String outServers;
    @Value("${spring.outkafka.consumer.group-id}")
    private String outGroupid;
    @Value("${spring.outkafka.consumer.enable-auto-commit}")
    private String outEnableAutoCommit;
    
 
    static {
        
    }
    
    /**
     * 连接第二个kafka集群的配置
     */
    @Bean
    KafkaListenerContainerFactory<ConcurrentMessageListenerContainer<Integer, String>> kafkaListenerContainerFactoryOutSchedule() {
        ConcurrentKafkaListenerContainerFactory<Integer, String> factory = new ConcurrentKafkaListenerContainerFactory<>();
        factory.setConsumerFactory(consumerFactoryOutSchedule());
        factory.setConcurrency(3);
        factory.getContainerProperties().setPollTimeout(3000);
        return factory;
    }
 
    @Bean
    public ConsumerFactory<Integer, String> consumerFactoryOutSchedule() {
        return new DefaultKafkaConsumerFactory<>(consumerConfigsOutSchedule());
    }
 
    /**
     * 连接第二个集群的消费者配置
     */
    @Bean
    public Map<String, Object> consumerConfigsOutSchedule() {
        Map<String, Object> props = new HashMap<>();
        props.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, outServers);
        props.put(ConsumerConfig.GROUP_ID_CONFIG, outGroupid);
        props.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, outEnableAutoCommit);
        props.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class);
        props.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class);
        return props;
    }
    
    @Bean //生产者工厂配置
    public ProducerFactory<String, String> producerOutFactory() {
        return new DefaultKafkaProducerFactory<>(senderOutProps());
    }
    
    @Bean //kafka发送消息模板
    public KafkaTemplate<String, String> kafkaOutTemplate() {
        return new KafkaTemplate<String, String>(producerOutFactory());
    }
    
    /**
     * 生产者配置方法
     *
     * 生产者有三个必选属性
     * <p>
     * 1.bootstrap.servers broker地址清单,清单不要包含所有的broker地址,
     * 生产者会从给定的broker里查找到其他broker的信息。不过建议至少提供两个broker信息,一旦 其中一个宕机,生产者仍能能够连接到集群上。
     * </p>
     * <p>
     * 2.key.serializer broker希望接收到的消息的键和值都是字节数组。 生产者用对应的类把键对象序列化成字节数组。
     * </p>
     * <p>
     * 3.value.serializer 值得序列化方式
     * </p>
     *
     *
     * @return
     */
    private Map<String, Object> senderOutProps() {
        Map<String, Object> props = new HashMap<>();
        props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, outServers);
        /**
         * 当从broker接收到的是临时可恢复的异常时,生产者会向broker重发消息,但是不能无限
         * 制重发,如果重发次数达到限制值,生产者将不会重试并返回错误。
         * 通过retries属性设置。默认情况下生产者会在重试后等待100ms,可以通过 retries.backoff.ms属性进行修改
         */
        props.put(ProducerConfig.RETRIES_CONFIG, 0);
        /**
         * 在考虑完成请求之前,生产者要求leader收到的确认数量。这可以控制发送记录的持久性。允许以下设置:
         * <ul>
         * <li>
         * <code> acks = 0 </ code>如果设置为零,则生产者将不会等待来自服务器的任何确认。该记录将立即添加到套接字缓冲区并视为已发送。在这种情况下,无法保证服务器已收到记录,并且
         * <code>retries </ code>配置将不会生效(因为客户端通常不会知道任何故障)。为每条记录返回的偏移量始终设置为-1。
         * <li> <code> acks = 1 </code>
         * 这意味着leader会将记录写入其本地日志,但无需等待所有follower的完全确认即可做出回应。在这种情况下,
         * 如果leader在确认记录后立即失败但在关注者复制之前,则记录将丢失。
         * <li><code> acks = all </code>
         * 这意味着leader将等待完整的同步副本集以确认记录。这保证了只要至少一个同步副本仍然存活,记录就不会丢失。这是最强有力的保证。
         * 这相当于acks = -1设置
         */
        props.put(ProducerConfig.ACKS_CONFIG, "1");
        /**
         * 当有多条消息要被发送到统一分区是,生产者会把他们放到统一批里。kafka通过批次的概念来 提高吞吐量,但是也会在增加延迟。
         */
        // 以下配置当缓存数量达到16kb,就会触发网络请求,发送消息
//        props.put(ProducerConfig.BATCH_SIZE_CONFIG, 16384);
        // 每条消息在缓存中的最长时间,如果超过这个时间就会忽略batch.size的限制,由客户端立即将消息发送出去
//        props.put(ProducerConfig.LINGER_MS_CONFIG, 1);
//        props.put(ProducerConfig.BUFFER_MEMORY_CONFIG, 33554432);
        props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class);
        props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, StringSerializer.class);
        return props;
    }
}

도구 클래스 MyKafkaProducer 보내기

아아아아

테스트 클래스

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.kafka.core.KafkaTemplate;
import org.springframework.kafka.support.SendResult;
import org.springframework.scheduling.annotation.EnableScheduling;
import org.springframework.stereotype.Component;
import org.springframework.util.concurrent.ListenableFuture;
 
import lombok.extern.slf4j.Slf4j;
 
/**
 * <p>
 * <b>KafkaProducer Description:</b> kafka生产者
 * </p>
 *
 * @author douzaixing<b>DATE</b> 2019年7月8日 下午4:09:29
 */
@Component // 这个必须加入容器不然,不会执行
@EnableScheduling // 这里是为了测试加入定时调度
@Slf4j
public class MyKafkaProducer {
 
    @Autowired
    private KafkaTemplate<String, String> kafkaTemplate;
 
    @Autowired
    private KafkaTemplate<String, String> kafkaOutTemplate;
 
    public ListenableFuture<SendResult<String, String>> send(String topic, String key, String json) {
        ListenableFuture<SendResult<String, String>> result = kafkaTemplate.send(topic, key, json);
        log.info("inner kafka send #topic=" + topic + "#key=" + key + "#json=" + json + "#推送成功===========");
        return result;
    }
 
    public ListenableFuture<SendResult<String, String>> sendOut(String topic, String key, String json) {
        ListenableFuture<SendResult<String, String>> result = kafkaOutTemplate.send(topic, key, json);
        log.info("out kafka send #topic=" + topic + "#key=" + key + "#json=" + json + "#推送成功===========");
        return result;
    }
 
}

수업 받기

@Slf4j
@RunWith(SpringJUnit4ClassRunner.class)
@SpringBootTest(classes={OesBcServiceApplication.class})
public class MoreKafkaTest {
    
    @Autowired
    private MyKafkaProducer kafkaProducer;
    
    @Test
    public void sendInner() {
        for (int i = 0; i < 1; i++) {
            kafkaProducer.send("inner_test", "douzi" + i, "liyuehua" + i);
            kafkaProducer.sendOut("out_test", "douziout" + i, "fanbingbing" + i);
        }
    }
}

테스트 결과

07-11 12:41:27.811 INFO [com.wondertek.oes.bc.service.send.MyKafkaProducer] - 내부 카프카 보내기 #topic=inner_test#key =douzi0#json=liyuehua0#푸시 성공===========

07-11 12:41:27.995 INFO [com.wondertek.oes.bc.service.send.KafkaConsumer] - 내부 카프카 수신 #key=douzi0#value=liyuehua0
07-11 12:41:28.005 INFO [com.wondertek.oes.bc.service.send.MyKafkaProducer] - 카프카 출력 #topic=out_test#key=douziout0#json=fanbingbing0# 푸시 성공 ===========
07-11 12:41:28.013 INFO [com.wondertek.oes.bc.service.send.KafkaConsumer] - kafka 수신 #key=douziout0#value=fanbingbing0

위 내용은 springboot에서 듀얼 카프카를 구성하는 방법의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

성명
이 기사는 亿速云에서 복제됩니다. 침해가 있는 경우 admin@php.cn으로 문의하시기 바랍니다. 삭제
고급 Java 프로젝트 관리, 구축 자동화 및 종속성 해상도에 Maven 또는 Gradle을 어떻게 사용합니까?고급 Java 프로젝트 관리, 구축 자동화 및 종속성 해상도에 Maven 또는 Gradle을 어떻게 사용합니까?Mar 17, 2025 pm 05:46 PM

이 기사에서는 Java 프로젝트 관리, 구축 자동화 및 종속성 해상도에 Maven 및 Gradle을 사용하여 접근 방식과 최적화 전략을 비교합니다.

적절한 버전 및 종속성 관리로 Custom Java 라이브러리 (JAR Files)를 작성하고 사용하려면 어떻게해야합니까?적절한 버전 및 종속성 관리로 Custom Java 라이브러리 (JAR Files)를 작성하고 사용하려면 어떻게해야합니까?Mar 17, 2025 pm 05:45 PM

이 기사에서는 Maven 및 Gradle과 같은 도구를 사용하여 적절한 버전 및 종속성 관리로 사용자 정의 Java 라이브러리 (JAR Files)를 작성하고 사용하는 것에 대해 설명합니다.

카페인 또는 구아바 캐시와 같은 라이브러리를 사용하여 자바 애플리케이션에서 다단계 캐싱을 구현하려면 어떻게해야합니까?카페인 또는 구아바 캐시와 같은 라이브러리를 사용하여 자바 애플리케이션에서 다단계 캐싱을 구현하려면 어떻게해야합니까?Mar 17, 2025 pm 05:44 PM

이 기사는 카페인 및 구아바 캐시를 사용하여 자바에서 다단계 캐싱을 구현하여 응용 프로그램 성능을 향상시키는 것에 대해 설명합니다. 구성 및 퇴거 정책 관리 Best Pra와 함께 설정, 통합 및 성능 이점을 다룹니다.

캐싱 및 게으른 하중과 같은 고급 기능을 사용하여 객체 관계 매핑에 JPA (Java Persistence API)를 어떻게 사용하려면 어떻게해야합니까?캐싱 및 게으른 하중과 같은 고급 기능을 사용하여 객체 관계 매핑에 JPA (Java Persistence API)를 어떻게 사용하려면 어떻게해야합니까?Mar 17, 2025 pm 05:43 PM

이 기사는 캐싱 및 게으른 하중과 같은 고급 기능을 사용하여 객체 관계 매핑에 JPA를 사용하는 것에 대해 설명합니다. 잠재적 인 함정을 강조하면서 성능을 최적화하기위한 설정, 엔티티 매핑 및 모범 사례를 다룹니다. [159 문자]

Java의 클래스로드 메커니즘은 다른 클래스 로더 및 대표 모델을 포함하여 어떻게 작동합니까?Java의 클래스로드 메커니즘은 다른 클래스 로더 및 대표 모델을 포함하여 어떻게 작동합니까?Mar 17, 2025 pm 05:35 PM

Java의 클래스 로딩에는 부트 스트랩, 확장 및 응용 프로그램 클래스 로더가있는 계층 적 시스템을 사용하여 클래스로드, 링크 및 초기화 클래스가 포함됩니다. 학부모 위임 모델은 핵심 클래스가 먼저로드되어 사용자 정의 클래스 LOA에 영향을 미치도록합니다.

See all articles

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

AI Hentai Generator

AI Hentai Generator

AI Hentai를 무료로 생성하십시오.

인기 기사

R.E.P.O. 에너지 결정과 그들이하는 일 (노란색 크리스탈)
3 몇 주 전By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. 최고의 그래픽 설정
3 몇 주 전By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. 아무도들을 수없는 경우 오디오를 수정하는 방법
3 몇 주 전By尊渡假赌尊渡假赌尊渡假赌
WWE 2K25 : Myrise에서 모든 것을 잠금 해제하는 방법
4 몇 주 전By尊渡假赌尊渡假赌尊渡假赌

뜨거운 도구

Eclipse용 SAP NetWeaver 서버 어댑터

Eclipse용 SAP NetWeaver 서버 어댑터

Eclipse를 SAP NetWeaver 애플리케이션 서버와 통합합니다.

Atom Editor Mac 버전 다운로드

Atom Editor Mac 버전 다운로드

가장 인기 있는 오픈 소스 편집기

ZendStudio 13.5.1 맥

ZendStudio 13.5.1 맥

강력한 PHP 통합 개발 환경

VSCode Windows 64비트 다운로드

VSCode Windows 64비트 다운로드

Microsoft에서 출시한 강력한 무료 IDE 편집기

스튜디오 13.0.1 보내기

스튜디오 13.0.1 보내기

강력한 PHP 통합 개발 환경