pandas
의 IO
API
는 최상위 reader
세트입니다. > 함수. 예를 들어 pandas.read_csv()
는 pandas
객체를 반환합니다. pandas
的 IO
API
是一组顶层的 reader
函数,比如 pandas.read_csv()
,会返回一个 pandas
对象。
而相应的 writer
函数是对象方法,如 DataFrame.to_csv()
。
注意:后面会用到 StringIO
,请确保导入
# python3 from io import StringIO # python2 from StringIO import StringIO
读取文本文件的主要函数是 read_csv()
read_csv()
接受以下常用参数:
filepath_or_buffer
: 变量
可以是文件路径、文件 URL
或任何带有 read()
函数的对象
sep
: str
,默认 ,
,对于 read_table
是 t
文件分隔符,如果设置为 None
,则 C
引擎无法自动检测分隔符,而 Python
引擎可以通过内置的嗅探器工具自动检测分隔符。
此外,如果设置的字符长度大于 1
,且不是 's+'
,那么该字符串会被解析为正则表达式,且强制使用 Python
解析引擎。
例如 '\r\t'
,但是正则表达式容易忽略文本中的引用数据。
delimiter
: str
, 默认为 None
sep
的替代参数,功能一致
header
: int
或 list
, 默认为 'infer'
用作列名的行号,默认行为是对列名进行推断:
如果未指定 names
参数其行为类似于 header=0
,即从读取的第一行开始推断。
如果设置了 names
,则行为与 header=None
相同。
也可以为 header
设置列表,表示多级列名。如 [0,1,3]
,未指定的行(这里是 2
)将会被跳过,如果 skip_blank_lines=True
,则会跳过空行和注释的行。因此 header=0
并不是代表文件的第一行
names
: array-like
, 默认为 None
需要设置的列名列表,如果文件中不包含标题行,则应显式传递 header=None
,且此列表中不允许有重复值。
index_col
: int
, str
, sequence of int/str
, False
, 默认为 None
用作 DataFrame
的索引的列,可以字符串名称或列索引的形式给出。如果指定了列表,则使用 MultiIndex
注意:index_col=False
可用于强制 pandas
不要将第一列用作索引。例如,当您的文件是每行末尾都带有一个分隔符的错误文件时。
usecols
: 列表或函数, 默认为 None
只读取指定的列。如果是列表,则所有元素都必须是位置(即文件列中的整数索引)或字符串,这些字符串必须与 names
参数提供的或从文档标题行推断出的列名相对应。
列表中的顺序会被忽略,即 usecols=[0, 1]
等价于 [1, 0]
如果是可调用函数,将会根据列名计算,返回可调用函数计算为 True
的名称
In [1]: import pandas as pd In [2]: from io import StringIO In [3]: data = "col1,col2,col3\na,b,1\na,b,2\nc,d,3" In [4]: pd.read_csv(StringIO(data)) Out[4]: col1 col2 col3 0 a b 1 1 a b 2 2 c d 3 In [5]: pd.read_csv(StringIO(data), usecols=lambda x: x.upper() in ["COL1", "COL3"]) Out[5]: col1 col3 0 a 1 1 a 2 2 c 3
使用此参数可以大大加快解析时间并降低内存使用
squeeze
: boolean
, 默认为 False
如果解析的数据只包含一列,那么返回一个 Series
prefix
: str
, 默认为 None
当没有标题时,添加到自动生成的列号的前缀,例如 'X'
表示 X0
, X1
...
mangle_dupe_cols
: boolean
, 默认为 True
writer
함수는 DataFrame.to_csv()
와 같은 객체 메서드입니다. 🎜🎜참고: StringIO
는 나중에 사용됩니다. 🎜In [6]: data = "col1,col2,col3\na,b,1\na,b,2\nc,d,3" In [7]: pd.read_csv(StringIO(data)) Out[7]: col1 col2 col3 0 a b 1 1 a b 2 2 c d 3 In [8]: pd.read_csv(StringIO(data), skiprows=lambda x: x % 2 != 0) Out[8]: col1 col2 col3 0 a b 2🎜1개의 CSV 및 텍스트 파일을 가져와야 합니다. 🎜🎜텍스트 파일을 읽는 주요 기능은
read_csv()
입니다. 🎜1 매개변수 분석🎜read_csv()
는 다음과 같은 공통 매개변수를 허용합니다.🎜filepath_or_buffer
: 변수🎜 URL
또는 read()
함수가 있는 모든 개체가 될 수 있습니다🎜 li>🎜 🎜sep
: str
, 기본값 ,
, read_table
의 경우 t
🎜None
으로 설정하면 C
엔진이 자동으로 구분 기호를 감지할 수 없습니다. Python
엔진은 내장된 스니퍼 도구를 통해 구분 기호를 자동으로 감지할 수 있습니다. 🎜1
보다 크고 's+'
가 아닌 경우 문자열은 다음과 같이 구문 분석됩니다. 정규 표현식 및 Python
구문 분석 엔진이 강제로 사용됩니다. 🎜'\r\t'
이지만 정규 표현식은 텍스트의 참조 데이터를 무시하는 경향이 있습니다. 🎜구분 기호
: str
, 기본값은 None
🎜sep
대체 매개변수, 함수는 동일🎜헤더
: int 또는 <code>list
, 기본값은 'infer'
🎜names
매개변수가 지정되지 않으면 다음과 같이 작동합니다. header =0
처럼 읽은 첫 번째 줄부터 시작한다는 의미입니다. 🎜names
가 설정된 경우 동작은 header=None
과 동일합니다. 🎜헤더
목록을 설정할 수도 있습니다. 예를 들어 [0,1,3]
, 지정되지 않은 줄(여기서는 2
)이 skip_blank_lines=True
인 경우 빈 줄과 주석이 달린 줄은 건너뜁니다. 따라서 header=0
는 파일🎜이름
: 배열과 유사
의 첫 번째 줄을 나타내지 않습니다. 기본값은 다음과 같습니다. None
🎜header =None로 전달되어야 하며, 이 목록에는 중복된 값이 허용되지 않습니다. 🎜
index_col
: int
, str
, int/str 시퀀스
, False
, 기본값은 None
🎜DataFrame
의 인덱스로 사용되는 열, 문자열 이름이나 열 인덱스로 제공되는 문자일 수 있습니다. 목록이 지정된 경우 MultiIndex
🎜index_col=False
를 사용하면 pandas
가 목록을 지정하지 않도록 강제할 수 있습니다. to One 열이 인덱스로 사용됩니다. 예를 들어 파일이 각 줄 끝에 구분 기호가 있는 잘못된 파일인 경우입니다. 🎜usecols
: 목록 또는 함수, 기본값은 None
🎜names
매개변수에 의해 제공되거나 문서 헤더 행에서 추론된 열 이름과 일치하는 문자열이어야 합니다. 🎜usecols=[0, 1]
은 [1, 0]
과 동일합니다. 🎜 li>True
로 계산된 호출 가능 함수 이름이 반환됩니다🎜compression={'method': 'gzip', 'compresslevel': 1, 'mtime': 1}🎜이 매개변수를 사용하면 구문 분석 시간을 크게 단축하고 메모리 사용량을 줄일 수 있습니다🎜🎜
squeeze
: boolean
, 기본값은 False
🎜시리즈
🎜접두사
를 반환합니다. str
, 기본값은 None
🎜'X'
와 같은 열 번호는 X0
, X1
...🎜mangle_dupe_cols
를 의미합니다. >: 부울
, 기본값은 True
🎜입니다.重复的列将被指定为 'X'
,'X.1'
…'X.N'
,而不是 'X'
... 。如果在列中有重复的名称,传递 False
将导致数据被覆盖
dtype
: 类型名或类型字典(column -> type
), 默认为 None
数据或列的数据类型。例如。 {'a':np.float64,'b':np.int32}
engine
: {'c', 'python'}
要使用的解析器引擎。C
引擎更快,而 Python
引擎目前功能更完整
converters
: dict
, 默认为 None
用于在某些列中对值进行转换的函数字典。键可以是整数,也可以是列名
true_values
: list
, 默认为 None
数据值解析为 True
false_values
: list
, 默认为 None
数据值解析为 False
skipinitialspace
: boolean
, 默认为 False
跳过分隔符之后的空格
skiprows
: 整数或整数列表, 默认为 None
在文件开头要跳过的行号(索引为 0
)或要跳过的行数
如果可调用函数,则对索引应用函数,如果返回 True
,则应跳过该行,否则返回 False
In [6]: data = "col1,col2,col3\na,b,1\na,b,2\nc,d,3" In [7]: pd.read_csv(StringIO(data)) Out[7]: col1 col2 col3 0 a b 1 1 a b 2 2 c d 3 In [8]: pd.read_csv(StringIO(data), skiprows=lambda x: x % 2 != 0) Out[8]: col1 col2 col3 0 a b 2
skipfooter
: int
, 默认为 0
需要跳过文件末尾的行数(不支持 C
引擎)
nrows
: int
, 默认为 None
要读取的文件行数,对于读取大文件很有用
memory_map
: boolean
, 默认为 False
如果为 filepath_or_buffer
参数指定了文件路径,则将文件对象直接映射到内存中,然后直接从那里访问数据。使用此选项可以提高性能,因为不再有任何 I/O
开销
na_values
: scalar
, str
, list-like
, dict
, 默认为 None
需要转换为 NA
值的字符串
keep_default_na
: boolean
, 默认为 True
解析数据时是否包含默认的 NaN
值。根据是否传入 na_values
,其行为如下
keep_default_na=True
, 且指定了 na_values
, na_values
将会与默认的 NaN
一起被解析
keep_default_na=True
, 且未指定 na_values
, 只解析默认的 NaN
keep_default_na=False
, 且指定了 na_values
, 只解析 na_values
指定的 NaN
keep_default_na=False
, 且未指定 na_values
, 字符串不会被解析为 NaN
注意:如果 na_filter=False
,那么 keep_default_na
和 na_values
参数将被忽略
na_filter
: boolean
, 默认为 True
检测缺失值标记(空字符串和 na_values
的值)。在没有任何 NA
的数据中,设置 na_filter=False
可以提高读取大文件的性能
skip_blank_lines
: boolean
, 默认为 True
如果为 True
,则跳过空行,而不是解释为 NaN
值
parse_dates
: 布尔值、列表或嵌套列表、字典, 默认为 False
.
如果为 True
-> 尝试解析索引
如果为 [1, 2, 3]
-> 尝试将 1, 2, 3
列解析为分隔的日期
如果为 [[1, 3]]
-> 将 1, 3
列解析为单个日期列
如果为 {'foo': [1, 3]}
-> 将 1, 3
列作为日期并设置列名为 foo
infer_datetime_format
: 布尔值, 默认为 False
如果设置为 True
且设置了 parse_dates
,则尝试推断 datetime
格式以加快处理速度
date_parser
: 函数, 默认为 None
用于将字符串序列转换为日期时间实例数组的函数。默认使用 dateutil.parser.parser
进行转换,pandas
将尝试以三种不同的方式调用 date_parser
传递一个或多个数组(parse_dates
定义的列)作为参数;
将 parse_dates
定义的列中的字符串值连接到单个数组中,并将其传递;
使用一个或多个字符串(对应于 parse_dates
定义的列)作为参数,对每一行调用 date_parser
一次。
dayfirst
: 布尔值, 默认为 False
DD/MM
格式的日期
cache_dates
: 布尔值, 默认为 True
如果为 True
,则使用唯一的、经过转换的日期缓存来应用 datetime
转换。
在解析重复的日期字符串,特别是带有时区偏移量的日期字符串时,可能会显著提高速度。
iterator
: boolean
, 默认为 False
返回 TextFileReader
对象以进行迭代或使用 get_chunk()
来获取块
compression
: {'infer', 'gzip', 'bz2', 'zip', 'xz', None, dict}
, 默认为 'infer'
用于对磁盘数据进行即时解压缩。如果为 "infer"
,则如果 filepath_or_buffer
是文件路径且以 ".gz"
,".bz2"
,".zip"
或 ".xz"
结尾,则分别使用 gzip
,bz2
,zip
或 xz
解压,否则不进行解压缩。
如果使用 "zip"
,则 ZIP
文件必须仅包含一个要读取的数据文件。设置为 None
表示不解压
也可以使用字典的方式,键为 method
的值从 {'zip', 'gzip', 'bz2'}
中选择。例如
compression={'method': 'gzip', 'compresslevel': 1, 'mtime': 1}
thousandsstr
, 默认为 None
数值在千位的分隔符
decimal
: str
, 默认为 '.'
小数点
float_precision
: string
, 默认为 None
指定 C
引擎应该使用哪个转换器来处理浮点值。普通转换器的选项为 None
,高精度转换器的选项为 high
,双向转换器的选项为 round_trip
。
quotechar
: str
(长度为 1
)
用于表示被引用数据的开始和结束的字符。带引号的数据里的分隔符将被忽略
comment
: str
, 默认为 None
用于跳过该字符开头的行,例如,如果 comment='#'
,将会跳过 #
开头的行
encoding
: str
, 默认为 None
设置编码格式
error_bad_linesboolean
, 默认为 True
默认情况下,字段太多的行(例如,带有太多逗号的 csv
文件)会引发异常,并且不会返回任何 DataFrame
。
如果设置为 False
,则这些坏行将会被删除
warn_bad_linesboolean
, 默认为 True
如果 error_bad_lines=False
且 warn_bad_lines=True
,每个坏行都会输出一个警告
您可以指示整个 DataFrame
或各列的数据类型
In [9]: import numpy as np In [10]: data = "a,b,c,d\n1,2,3,4\n5,6,7,8\n9,10,11" In [11]: print(data) a,b,c,d 1,2,3,4 5,6,7,8 9,10,11 In [12]: df = pd.read_csv(StringIO(data), dtype=object) In [13]: df Out[13]: a b c d 0 1 2 3 4 1 5 6 7 8 2 9 10 11 NaN In [14]: df["a"][0] Out[14]: '1' In [15]: df = pd.read_csv(StringIO(data), dtype={"b": object, "c": np.float64, "d": "Int64"}) In [16]: df.dtypes Out[16]: a int64 b object c float64 d Int64 dtype: object
你可以使用 read_csv()
的 converters
参数,统一某列的数据类型
In [17]: data = "col_1\n1\n2\n'A'\n4.22" In [18]: df = pd.read_csv(StringIO(data), converters={"col_1": str}) In [19]: df Out[19]: col_1 0 1 1 2 2 'A' 3 4.22 In [20]: df["col_1"].apply(type).value_counts() Out[20]: <class 'str'> 4 Name: col_1, dtype: int64
或者,您可以在读取数据后使用 to_numeric()
函数强制转换类型
In [21]: df2 = pd.read_csv(StringIO(data)) In [22]: df2["col_1"] = pd.to_numeric(df2["col_1"], errors="coerce") In [23]: df2 Out[23]: col_1 0 1.00 1 2.00 2 NaN 3 4.22 In [24]: df2["col_1"].apply(type).value_counts() Out[24]: <class 'float'> 4 Name: col_1, dtype: int64
它将所有有效的数值转换为浮点数,而将无效的解析为 NaN
最后,如何处理包含混合类型的列取决于你的具体需要。在上面的例子中,如果您只想要将异常的数据转换为 NaN
,那么 to_numeric()
可能是您的最佳选择。
然而,如果您想要强制转换所有数据,而无论类型如何,那么使用 read_csv()
的 converters
参数会更好
注意
在某些情况下,读取包含混合类型列的异常数据将导致数据集不一致。
如果您依赖 pandas
来推断列的类型,解析引擎将继续推断数据块的类型,而不是一次推断整个数据集。
In [25]: col_1 = list(range(500000)) + ["a", "b"] + list(range(500000)) In [26]: df = pd.DataFrame({"col_1": col_1}) In [27]: df.to_csv("foo.csv") In [28]: mixed_df = pd.read_csv("foo.csv") In [29]: mixed_df["col_1"].apply(type).value_counts() Out[29]: <class 'int'> 737858 <class 'str'> 262144 Name: col_1, dtype: int64 In [30]: mixed_df["col_1"].dtype Out[30]: dtype('O')
这就导致 mixed_df
对于列的某些块包含 int
类型,而对于其他块则包含 str
,这是由于读取的数据是混合类型。
위 내용은 Python 데이터 처리 팬더에서 읽기 및 쓰기 작업을 위한 IO 도구로 CSV 사용의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!