찾다
백엔드 개발파이썬 튜토리얼Python을 사용하여 모두를 놀라게 할 멋진 gif 애니메이션을 그려보세요.

Python을 사용하여 모두를 놀라게 할 멋진 gif 애니메이션을 그려보세요.

이전 기사에서 편집자는 ​​Python​​​​gif​​​만들기 위한 모듈​​gif​​ 형식 차트는 ​Python​​​当中的​​gif​​​模块来制作​​gif​​格式的图表,

厉害了,用Python绘制动态可视化图表,并保存成gif格式今天小编再给大家来介绍一种制作​​gif​​​格式图表的新方法,调用的是​​matplotlib​​的相关模块,其中的步骤与方法也是相当地简单易懂。

下载和导入数据库

我们这次用到的数据集是​​bokeh​​模块自带的数据集,通过下面这一行代码直接就可以下载

import bokeh
bokeh.sampledata.download()


然后导入后面要用到的数据集,我们挑选的是指定国家的1950年至今不同年龄阶段的人口所占比重的数据

from bokeh.sampledata.population import data
import numpy as np

data = filter_loc('United States of America')
data.head()


output

Python을 사용하여 모두를 놀라게 할 멋진 gif 애니메이션을 그려보세요.

先绘制若干张静态的图表

我们可以先绘制若干张静态的图表,然后将这几张图表合成一张​​gif​​格式的动图即可,代码如下

import seaborn as sns
import matplotlib.pyplot as plt
import matplotlib.patheffects as fx

# 绘制图表的函数
def make_plot(year):
    
    # 根据年份来筛选出数据
    df = data[data.Year == year]
        
    # 制作图表
    fig, (ax1, ax2) = plt.subplots(1, 2, sharey = True)
    ax1.invert_xaxis()
    fig.subplots_adjust(wspace = 0) 
    
    ax1.barh(df[df.Sex == 'Male'].AgeGrp, df[df.Sex == 'Male'].percent, label = 'Male')
    ax2.barh(df[df.Sex == 'Female'].AgeGrp, df[df.Sex == 'Female'].percent, label = 'Female', color = 'C1')
    
    country = df.Location.iloc[0]
    if country == 'United States of America': country == 'US'
        
    fig.suptitle(f'......')
    fig.supxlabel('......')
    fig.legend(bbox_to_anchor = (0.9, 0.88), loc = 'upper right')
    ax1.set_ylabel('Age Groups')
    
    return fig


我们自定义了一个绘制图表的函数,其中的参数是年份,逻辑很简单,我们是想根据年份来筛选出数据,然后根据筛选出的数据来绘制图表,每一年的图表不尽相同

years = [i for i in set(data.Year) if i < 2022]
years.sort()

for year in years:
    fig = make_plot(year)
    fig.savefig(f'{year}.jpeg',bbox_inches = 'tight')


output

Python을 사용하여 모두를 놀라게 할 멋진 gif 애니메이션을 그려보세요.

这样我们就生成了若干张静态的图表,然后集合成​​gif​

멋집니다. Python으로 동적인 시각화 차트를 그려서 gif 형식으로 저장하는 방법을 오늘은 제작 방법을 소개하겠습니다.​gif​​​ 차트 서식 지정, <code style="font-family: monospace; 글꼴 크기: 상속; 배경색: rgba(0, 0, 0, 0.06); 패딩: 0px 2px; 테두리 반경: 6px; 라인- height: 상속; Overflow-wrap: break-word; text-indent: 0px;">​matplotlib​​관련 모듈, 단계 및 방법도 매우 유사하여 이해하기 쉽습니다.

데이터베이스 다운로드 및 가져오기

Python을 사용하여 모두를 놀라게 할 멋진 gif 애니메이션을 그려보세요.Python을 사용하여 모두를 놀라게 할 멋진 gif 애니메이션을 그려보세요. 이번에 사용한 데이터 세트는​import matplotlib.animation as animation fig, ax = plt.subplots() ims = [] for year in years: im = ax.imshow(plt.imread(f'{year}.jpeg'), animated = True) ims.append([im]) ani = animation.ArtistAnimation(fig, ims, interval=600) ani.save('us_population.gif') </pre><h3 >를 통해 직접 다운로드한 다음 나중에 사용할 데이터 세트로 가져올 수 있습니다. 1950년부터 현재까지의 비중 데이터<span style=" color:><pre class='brush:php;toolbar:false;'>fig, (ax1, ax2) = plt.subplots(1, 2, sharey = True) df = data[data.Year == 1955] y_pos = [i for i in range(len(df[df.Sex == 'Male']))] male = ax1.barh(y_pos, df[df.Sex == 'Male'].percent, label = 'Male', tick_label = df[df.Sex == 'Male'].AgeGrp) female = ax2.barh(y_pos, df[df.Sex == 'Female'].percent, label = 'Female', color = 'C1', tick_label = df[df.Sex == 'Male'].AgeGrp) ax1.invert_xaxis() fig.suptitle('.......') fig.supxlabel('....... (%)') fig.legend(bbox_to_anchor = (0.9, 0.88), loc = 'upper right') ax1.set_ylabel('Age Groups') </pre>

output

Python을 사용하여 그리기 멋진 gif 애니메이션, 다들 놀라워요

먼저 여러 개의 정적 차트를 그립니다

Python을 사용하여 모두를 놀라게 할 멋진 gif 애니메이션을 그려보세요.

먼저 여러 개의 정적 차트를 그린 다음 이 차트를 하나로 결합할 수 있습니다.​def run(year): # 通过年份来筛选出数据 df = data[data.Year == year] # 针对不同地性别来绘制 total_pop = df.Value.sum() df['percent'] = df.Value / total_pop * 100 male.remove() y_pos = [i for i in range(len(df[df.Sex == 'Male']))] male.patches = ax1.barh(y_pos, df[df.Sex == 'Male'].percent, label = 'Male', color = 'C0', tick_label = df[df.Sex == 'Male'].AgeGrp) female.remove() female.patches = ax2.barh(y_pos, df[df.Sex == 'Female'].percent, label = 'Female', color = 'C1', tick_label = df[df.Sex == 'Female'].AgeGrp) text.set_text(year) return male#, female </pre></p>차트를 그리는 기능을 사용자 정의했습니다. 논리는 매우 간단합니다. Year를 선택하여 데이터를 필터링한 다음, 필터링된 데이터를 기반으로 차트를 그립니다. 각 연도의 차트는 다릅니다🎜<pre class='brush:php;toolbar:false;'>ani = animation.FuncAnimation(fig, run, years, blit = True, repeat = True, interval = 600) ani.save('文件名.gif') </pre>🎜output🎜🎜<img src=" data-src="https://img.php.cn/upload/article/000/887/227/168318834978200.gif?x-oss-process=image/resize,p_40" class="lazy" alt="Python을 사용하여 모두를 놀라게 하는 멋진 gif 애니메이션을 그립니다.">🎜🎜이러한 방식으로 여러 정적 차트를 생성한 다음 이를 ​​gif​​ 형식의 여러 차트, 코드는 다음과 같습니다🎜
import matplotlib.animation as animation

# 创建一个新的画布
fig, (ax, ax2, ax3) = plt.subplots(1, 3, figsize = (10, 3))

ims = []
for year in years:
    im = ax.imshow(plt.imread(f'文件1{year}.jpeg'), animated = True)
    im2 = ax2.imshow(plt.imread(f'文件2{year}.jpeg'), animated = True)
    im3 = ax3.imshow(plt.imread(f'文件3{year}.jpeg'), animated = True)
    ims.append([im, im2, im3])

ani = animation.ArtistAnimation(fig, ims, interval=600)
ani.save('comparison.gif')


🎜output🎜🎜🎜🎜🎜🎜🎜여기에서 볼 수 있는 또 다른 아이디어가 있습니다. , 어떤 사람들은 위에서 언급한 방법이 약간 번거롭다고 생각할 수도 있습니다. 결국, 컴퓨터의 디스크 공간이 조금 부족하거나 이러한 수십 개를 저장할 공간이 없다면 먼저 수십 개의 정적 차트를 생성해야 합니다. 차트. 그렇다면 한 단계로 완료할 수 있는지 궁금할 것입니다. 물론 가능하다. 예를 들어 1950년부터 2020년까지 연령별 인구비율 분포를 도출할 계획이라면, 첫 번째 단계는 시작연도인 1950년을 기준으로 연령별 인구비율 분포를 도출하는 것이다. 그림, 코드는 다음과 같습니다🎜rrreee🎜output🎜🎜🎜🎜🎜 그런 다음 차트를 그리는 함수를 사용자 정의합니다. 여기서 매개 변수는 연도이며, 목적은 해당 데이터를 연도별로 필터링하여 해당 차트를 그리는 것입니다🎜
def run(year):
    # 通过年份来筛选出数据
    df = data[data.Year == year]
    # 针对不同地性别来绘制
    total_pop = df.Value.sum()
    df['percent'] = df.Value / total_pop * 100
    male.remove()
    y_pos = [i for i in range(len(df[df.Sex == 'Male']))]
    male.patches = ax1.barh(y_pos, df[df.Sex == 'Male'].percent, label = 'Male', 
                     color = 'C0', tick_label = df[df.Sex == 'Male'].AgeGrp)
    female.remove()
    female.patches = ax2.barh(y_pos, df[df.Sex == 'Female'].percent, label = 'Female',
                 
                 color = 'C1', tick_label = df[df.Sex == 'Female'].AgeGrp)

    text.set_text(year)
    return male#, female


然后我们调用​​animation.FuncAnimation()​​方法,

ani = animation.FuncAnimation(fig, run, years, blit = True, repeat = True, 
                              interval = 600)
ani.save('文件名.gif')


output

Python을 사용하여 모두를 놀라게 할 멋진 gif 애니메이션을 그려보세요.

这样就可以一步到位生成​​gif​​格式的图表,避免生成数十张繁多地静态图片了。

将若干张​<span style="color: #2b2b2b;">gif</span>​动图放置在一张大图当中

最后我们可以将若干张​​gif​​动图放置在一张大的图表当中,代码如下

import matplotlib.animation as animation

# 创建一个新的画布
fig, (ax, ax2, ax3) = plt.subplots(1, 3, figsize = (10, 3))

ims = []
for year in years:
    im = ax.imshow(plt.imread(f'文件1{year}.jpeg'), animated = True)
    im2 = ax2.imshow(plt.imread(f'文件2{year}.jpeg'), animated = True)
    im3 = ax3.imshow(plt.imread(f'文件3{year}.jpeg'), animated = True)
    ims.append([im, im2, im3])

ani = animation.ArtistAnimation(fig, ims, interval=600)
ani.save('comparison.gif')


output

Python을 사용하여 모두를 놀라게 할 멋진 gif 애니메이션을 그려보세요.


위 내용은 Python을 사용하여 모두를 놀라게 할 멋진 gif 애니메이션을 그려보세요.의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

성명
이 기사는 51CTO.COM에서 복제됩니다. 침해가 있는 경우 admin@php.cn으로 문의하시기 바랍니다. 삭제
Python 학습 : 2 시간의 일일 연구가 충분합니까?Python 학습 : 2 시간의 일일 연구가 충분합니까?Apr 18, 2025 am 12:22 AM

하루에 2 시간 동안 파이썬을 배우는 것으로 충분합니까? 목표와 학습 방법에 따라 다릅니다. 1) 명확한 학습 계획을 개발, 2) 적절한 학습 자원 및 방법을 선택하고 3) 실습 연습 및 검토 및 통합 연습 및 검토 및 통합,이 기간 동안 Python의 기본 지식과 고급 기능을 점차적으로 마스터 할 수 있습니다.

웹 개발을위한 파이썬 : 주요 응용 프로그램웹 개발을위한 파이썬 : 주요 응용 프로그램Apr 18, 2025 am 12:20 AM

웹 개발에서 Python의 주요 응용 프로그램에는 Django 및 Flask 프레임 워크 사용, API 개발, 데이터 분석 및 시각화, 머신 러닝 및 AI 및 성능 최적화가 포함됩니다. 1. Django 및 Flask 프레임 워크 : Django는 복잡한 응용 분야의 빠른 개발에 적합하며 플라스크는 소형 또는 고도로 맞춤형 프로젝트에 적합합니다. 2. API 개발 : Flask 또는 DjangorestFramework를 사용하여 RESTFULAPI를 구축하십시오. 3. 데이터 분석 및 시각화 : Python을 사용하여 데이터를 처리하고 웹 인터페이스를 통해 표시합니다. 4. 머신 러닝 및 AI : 파이썬은 지능형 웹 애플리케이션을 구축하는 데 사용됩니다. 5. 성능 최적화 : 비동기 프로그래밍, 캐싱 및 코드를 통해 최적화

Python vs. C : 성능과 효율성 탐색Python vs. C : 성능과 효율성 탐색Apr 18, 2025 am 12:20 AM

Python은 개발 효율에서 C보다 낫지 만 C는 실행 성능이 높습니다. 1. Python의 간결한 구문 및 풍부한 라이브러리는 개발 효율성을 향상시킵니다. 2.C의 컴파일 유형 특성 및 하드웨어 제어는 실행 성능을 향상시킵니다. 선택할 때는 프로젝트 요구에 따라 개발 속도 및 실행 효율성을 평가해야합니다.

Python in Action : 실제 예제Python in Action : 실제 예제Apr 18, 2025 am 12:18 AM

Python의 실제 응용 프로그램에는 데이터 분석, 웹 개발, 인공 지능 및 자동화가 포함됩니다. 1) 데이터 분석에서 Python은 Pandas 및 Matplotlib를 사용하여 데이터를 처리하고 시각화합니다. 2) 웹 개발에서 Django 및 Flask 프레임 워크는 웹 응용 프로그램 생성을 단순화합니다. 3) 인공 지능 분야에서 Tensorflow와 Pytorch는 모델을 구축하고 훈련시키는 데 사용됩니다. 4) 자동화 측면에서 파이썬 스크립트는 파일 복사와 같은 작업에 사용할 수 있습니다.

Python의 주요 용도 : 포괄적 인 개요Python의 주요 용도 : 포괄적 인 개요Apr 18, 2025 am 12:18 AM

Python은 데이터 과학, 웹 개발 및 자동화 스크립팅 필드에 널리 사용됩니다. 1) 데이터 과학에서 Python은 Numpy 및 Pandas와 같은 라이브러리를 통해 데이터 처리 및 분석을 단순화합니다. 2) 웹 개발에서 Django 및 Flask 프레임 워크를 통해 개발자는 응용 프로그램을 신속하게 구축 할 수 있습니다. 3) 자동 스크립트에서 Python의 단순성과 표준 라이브러리가 이상적입니다.

파이썬의 주요 목적 : 유연성과 사용 편의성파이썬의 주요 목적 : 유연성과 사용 편의성Apr 17, 2025 am 12:14 AM

Python의 유연성은 다중 파리가 지원 및 동적 유형 시스템에 반영되며, 사용 편의성은 간단한 구문 및 풍부한 표준 라이브러리에서 나옵니다. 유연성 : 객체 지향, 기능 및 절차 프로그래밍을 지원하며 동적 유형 시스템은 개발 효율성을 향상시킵니다. 2. 사용 편의성 : 문법은 자연 언어에 가깝고 표준 라이브러리는 광범위한 기능을 다루며 개발 프로세스를 단순화합니다.

파이썬 : 다목적 프로그래밍의 힘파이썬 : 다목적 프로그래밍의 힘Apr 17, 2025 am 12:09 AM

Python은 초보자부터 고급 개발자에 이르기까지 모든 요구에 적합한 단순성과 힘에 호의적입니다. 다목적 성은 다음과 같이 반영됩니다. 1) 배우고 사용하기 쉽고 간단한 구문; 2) Numpy, Pandas 등과 같은 풍부한 라이브러리 및 프레임 워크; 3) 다양한 운영 체제에서 실행할 수있는 크로스 플랫폼 지원; 4) 작업 효율성을 향상시키기위한 스크립팅 및 자동화 작업에 적합합니다.

하루 2 시간 안에 파이썬 학습 : 실용 가이드하루 2 시간 안에 파이썬 학습 : 실용 가이드Apr 17, 2025 am 12:05 AM

예, 하루에 2 시간 후에 파이썬을 배우십시오. 1. 합리적인 학습 계획 개발, 2. 올바른 학습 자원을 선택하십시오. 3. 실습을 통해 학습 된 지식을 통합하십시오. 이 단계는 짧은 시간 안에 Python을 마스터하는 데 도움이 될 수 있습니다.

See all articles

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

AI Hentai Generator

AI Hentai Generator

AI Hentai를 무료로 생성하십시오.

뜨거운 도구

MinGW - Windows용 미니멀리스트 GNU

MinGW - Windows용 미니멀리스트 GNU

이 프로젝트는 osdn.net/projects/mingw로 마이그레이션되는 중입니다. 계속해서 그곳에서 우리를 팔로우할 수 있습니다. MinGW: GCC(GNU Compiler Collection)의 기본 Windows 포트로, 기본 Windows 애플리케이션을 구축하기 위한 무료 배포 가능 가져오기 라이브러리 및 헤더 파일로 C99 기능을 지원하는 MSVC 런타임에 대한 확장이 포함되어 있습니다. 모든 MinGW 소프트웨어는 64비트 Windows 플랫폼에서 실행될 수 있습니다.

SublimeText3 영어 버전

SublimeText3 영어 버전

권장 사항: Win 버전, 코드 프롬프트 지원!

SublimeText3 중국어 버전

SublimeText3 중국어 버전

중국어 버전, 사용하기 매우 쉽습니다.

Eclipse용 SAP NetWeaver 서버 어댑터

Eclipse용 SAP NetWeaver 서버 어댑터

Eclipse를 SAP NetWeaver 애플리케이션 서버와 통합합니다.

PhpStorm 맥 버전

PhpStorm 맥 버전

최신(2018.2.1) 전문 PHP 통합 개발 도구