>  기사  >  Java  >  Java에서 일반적인 정렬 알고리즘을 구현하는 방법

Java에서 일반적인 정렬 알고리즘을 구현하는 방법

王林
王林앞으로
2023-04-28 20:34:12973검색

요약:

Java에서 일반적인 정렬 알고리즘을 구현하는 방법

1. 버블 정렬

각 루프 라운드에서 가장 좋은 값을 결정합니다.

public void bubbleSort(int[] nums){
    int temp;
    boolean isSort = false; //优化,发现排序好就退出
    for (int i = 0; i < nums.length-1; i++) {
        for (int j = 0; j < nums.length-1-i; j++) {  //每次排序后能确定较大值
            if(nums[j] > nums[j+1]){
                isSort = true;
                temp = nums[j];
                nums[j] = nums[j+1];
                nums[j+1] = temp;
            }
        }
        if(!isSort){
            return;
        } else {
            isSort = false;
        }
    }
}

2. 매번 가장 좋은 값을 선택하여 가장자리로 교환합니다. ;

public void selectSort(int[] nums){
    for (int i = 0; i < nums.length-1; i++) {
        int index = i;
        int minNum = nums[i];
        for (int j = i+1; j < nums.length; j++) {
            if(nums[j] < minNum){
                minNum = nums[j];
                index = j;
            }
        }
        if(index != i){
            nums[index] = nums[i];
            nums[i] = minNum;
        }
    }
}

3. 삽입 정렬

루프에서 각 숫자의 위치를 ​​찾아 삽입합니다.

public void insertionSort(int[] nums){
    for (int i = 1; i < nums.length; i++) {
        int j = i;
        int insertNum = nums[i];
        while(j-1 >= 0 && nums[j-1] > insertNum){
            nums[j] = nums[j-1];
            j--;
        }
        nums[j] = insertNum;
    }
}

4. 기본 값을 선택하고 해당 값을 한쪽에 둡니다.

public void quickSortDfs(int[] nums, int left, int right){
    if(left > right){
        return;
    }
    int l = left;
    int r = right;
    int baseNum = nums[left];
    while(l < r){
        //必须右边先走
        while(nums[r] >= baseNum && l < r){
            r--;
        }
        while(nums[l] <= baseNum && l < r){
            l++;
        }
        int temp = nums[l];
        nums[l] = nums[r];
        nums[r] = temp;
    }
    nums[left] = nums[l];
    nums[l] = baseNum;
    quickSortDfs(nums, left, r-1);
    quickSortDfs(nums, l+1, right);
}

5. 병합 정렬

분할 및 정복 알고리즘

숫자 교환 횟수를 줄이고 효율성을 높입니다.

6.1 Hill-bubble 정렬(느림)

//归
public void mergeSortDfs(int[] nums, int l, int r){
    if(l >= r){
        return;
    }
    int m = (l+r)/2;
    mergeSortDfs(nums, l, m);
    mergeSortDfs(nums, m+1, r);
    merge(nums, l, m, r);
}
//并
private void merge(int[] nums, int left, int mid, int right){
    int[] temp = new int[right-left+1];
    int l = left;
    int m = mid+1;
    int i = 0;
    while(l <= mid && m <= right){
        if(nums[l] < nums[m]){
            temp[i++] = nums[l++];
        } else {
            temp[i++] = nums[m++];
        }
    }
    while(l <= mid){
        temp[i++] = nums[l++];
    }
    while(m <= right){
        temp[i++] = nums[m++];
    }
    System.arraycopy(temp, 0, nums, left, temp.length);
}
6.2 Hill-삽입 정렬(빠름)

public void shellBubbleSort(int[] nums){
    for (int step = nums.length/2; step > 0 ; step /= 2) {
        for (int i = step; i < nums.length; i++) {
            for (int j = i-step; j >= 0; j -= step) {
                if(nums[j] > nums[j+step]){
                    int temp = nums[j];
                    nums[j] = nums[j+step];
                    nums[j+step] = temp;
                }
            }
        }
    }
}

7. Big Top Heap은 오름차순, 이동을 구현합니다. 매번 힙의 마지막 위치까지의 최대값;

public void shellInsertSort(int[] nums){
    for (int step = nums.length/2; step > 0; step /= 2) {
        for (int i = step; i < nums.length; i++) {
            int j = i;
            int insertNum = nums[i];
            while(j-step >= 0 && nums[j-step] > insertNum){
                nums[j] = nums[j-step];
                j-=step;
            }
            nums[j] = insertNum;
        }
    }
}

8. Counting sort

각 숫자의 발생 횟수를 순서대로 셉니다.

public void heapSort2(int[] nums) {
    for(int i = nums.length/2-1; i >= 0; i--){
        sift(nums, i, nums.length);
    }
    for (int i = nums.length-1; i > 0; i--) {
        int temp = nums[0];
        nums[0] = nums[i];
        nums[i] = temp;
        sift(nums, 0, i);
    }
}
private void sift(int[] nums, int parent, int len) {
    int value = nums[parent];
    for (int child = 2*parent +1; child < len; child = child*2 +1) {
        if(child+1 < len && nums[child+1] > nums[child]){
            child++;
        }
        if(nums[child] > value){
            nums[parent] = nums[child];
            parent = child;
        } else {
            break;
        }
    }
    nums[parent] = value;
}

9. Bucket sort

그러나 차이점은 특정 간격(버킷)으로 숫자를 계산한다는 것입니다.

public void countSort(int[] nums){
    int max = Integer.MIN_VALUE;
    int min = Integer.MAX_VALUE;
    for(int num : nums){
        max = Math.max(max, num);
        min = Math.min(min, num);
    }

    int[] countMap = new int[max-min+1];
    for(int num : nums){
        countMap[num-min]++;
    }
    int i = 0;
    int j = 0;
    while(i < nums.length && j < countMap.length){
        if(countMap[j] > 0){
            nums[i] = j+min;
            i++;
            countMap[j]--;
        } else {
            j++;
        }
    }
}

10 . Radix sort

10, 100으로 정렬합니다.

public void bucketSort(int[] nums){
    int max = Integer.MIN_VALUE;
    int min = Integer.MAX_VALUE;
    for(int num : nums){
        max = Math.max(max, num);
        min = Math.min(min, num);
    }
    int bucketCount = (max-min)/nums.length+1;
    List<List<Integer>> bucketList = new ArrayList<>();
    for (int i = 0; i < bucketCount; i++) {
        bucketList.add(new ArrayList<>());
    }

    for(int num : nums){
        int index = (num-min)/nums.length;
        bucketList.get(index).add(num);
    }
    for(List<Integer> bucket : bucketList){
        Collections.sort(bucket);
    }

    int j = 0;
    for(List<Integer> bucket : bucketList){
        for(int num : bucket){
            nums[j] = num;
            j++;
        }
    }
}

11. 11.1 우선순위 큐

public  void radixSort(int[] nums){
    int min = Integer.MAX_VALUE;
    int max = Integer.MIN_VALUE;
    for (int num : nums) {
        min = Math.min(min, num);
        max = Math.max(max, num);
    }
    for (int i = 0; i < nums.length; i++) {
        nums[i] -= min;
    }
    max -= min;
    int maxLen = (max+"").length();

    int[][] bucket = new int[nums.length][10];
    int[] bucketCount = new int[10];

    for (int i = 0, n = 1; i < maxLen; i++, n*=10) {
        for (int num : nums) {
            int digitVal = num / n % 10;
            bucket[bucketCount[digitVal]][digitVal] = num;
            bucketCount[digitVal]++;
        }
        int index = 0;
        for (int j = 0; j < bucketCount.length; j++) {
            if(bucketCount[j] > 0){
                for (int k = 0; k < bucketCount[j]; k++) {
                    nums[index] = bucket[k][j];
                    index++;
                }
            }
            bucketCount[j] = 0;
        }
    }
    for (int i = 0; i < nums.length; i++) {
        nums[i] += min;
    }
}
11.2 자바 API

public void priorityQueueSort(int[] nums){
    PriorityQueue<Integer> queue = new PriorityQueue<>();
    for(int num : nums){
        queue.offer(num);
    }
    for (int i = 0; i < nums.length; i++) {
        nums[i] = queue.poll();
    }
}

위 내용은 Java에서 일반적인 정렬 알고리즘을 구현하는 방법의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

성명:
이 기사는 yisu.com에서 복제됩니다. 침해가 있는 경우 admin@php.cn으로 문의하시기 바랍니다. 삭제