1. python 플라스크 코드를 작성하고 sum.py
import json from flask import Flask,request,render_template app = Flask(__name__) @app.route('/') def index(): return 'hello world' @app.route('/sum',methods=['POST']) def correct(): a= request.json['a'] b=request.json['b'] sum=int(a)+int(b) print(sum) result={"sum:":sum} return result if __name__ == '__main__': app.run(host="0.0.0.0",port=5000)
2라는 추가 인터페이스를 작성하세요. 이를 미러로 패키징하려면 필요한 종속성을 작성해야 합니다. 여기서는 pipreqs
를 실행하는 것이 좋습니다. pip install pipreqs 명령 (설치되어 있지 않은 경우)
--pipreqs 명령을 실행합니다./ --encoding=utf8 --force
디렉토리
3에 요구 사항.txt가 생성된 것을 볼 수 있습니다. dockerfile 파일을 작성합니다
FROM python:3.7 COPY . /app/ RUN pip install -r /app/requirements.txt WORKDIR /app EXPOSE 5000 CMD [ "python","sum.py" ]
실행 전 3단계를 거치면 전체 코드 디렉터리 구조는 그림
4과 같습니다. 패키징 이미지
--docker build -f Dockerfile -t pyhonflask 명령을 실행합니다.
작업이 완료된 후 docker Images 명령을 사용하면 패키징 완료 이미지를 볼 수 있습니다.
5. 이미지를 실행합니다.
Docker Desktop을 사용하여 직접 실행했습니다.
확인 docker 시작 상태
6. 확인 인터페이스
위 내용은 Python 플라스크 프로젝트를 릴리스용 Docker 이미지로 패키징하는 방법은 무엇입니까?의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

numpyarraysarebetterfornumericaloperations 및 multi-dimensionaldata, mumemer-efficientArrays

numpyarraysarebetterforheavynumericalcomputing, whilearraymoduleisiMoresuily-sportainedprojectswithsimpledatatypes.1) numpyarraysofferversatively 및 formanceforgedatasets 및 complexoperations.2) Thearraymoduleisweighit 및 ep

ctypesallowscreatingandmanipulatingC-stylearraysinPython.1)UsectypestointerfacewithClibrariesforperformance.2)CreateC-stylearraysfornumericalcomputations.3)PassarraystoCfunctionsforefficientoperations.However,becautiousofmemorymanagement,performanceo

Inpython, "목록", isaversatile, mutablesequencetatcanholdmixeddatattypes, whilean "array"isamorememory-efficed, homogeneouseceenceRequiringElements ofthesAmeType.1) ListSareIdeAldiversEdatastorageandmanipulationDuetoIrflexibrieth

PythonlistsAndarraysareBotheBotheBothebothable.1) ListSareflexibleandsupporterogenousDatabutarabestemory-efficient.2) Arraysaremorememory-efforhomogeneousdatabutlessverstile, CorrectTypecodeusagetoavoidercer가 필요합니다.

Python과 C는 각각 고유 한 장점이 있으며 선택은 프로젝트 요구 사항을 기반으로해야합니다. 1) Python은 간결한 구문 및 동적 타이핑으로 인해 빠른 개발 및 데이터 처리에 적합합니다. 2) C는 정적 타이핑 및 수동 메모리 관리로 인해 고성능 및 시스템 프로그래밍에 적합합니다.

Python 또는 C를 선택하는 것은 프로젝트 요구 사항에 따라 다릅니다. 1) 빠른 개발, 데이터 처리 및 프로토 타입 설계가 필요한 경우 Python을 선택하십시오. 2) 고성능, 낮은 대기 시간 및 근접 하드웨어 제어가 필요한 경우 C를 선택하십시오.

매일 2 시간의 파이썬 학습을 투자하면 프로그래밍 기술을 효과적으로 향상시킬 수 있습니다. 1. 새로운 지식 배우기 : 문서를 읽거나 자습서를 시청하십시오. 2. 연습 : 코드를 작성하고 완전한 연습을합니다. 3. 검토 : 배운 내용을 통합하십시오. 4. 프로젝트 실무 : 실제 프로젝트에서 배운 것을 적용하십시오. 이러한 구조화 된 학습 계획은 파이썬을 체계적으로 마스터하고 경력 목표를 달성하는 데 도움이 될 수 있습니다.


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

Dreamweaver Mac版
시각적 웹 개발 도구

VSCode Windows 64비트 다운로드
Microsoft에서 출시한 강력한 무료 IDE 편집기

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

안전한 시험 브라우저
안전한 시험 브라우저는 온라인 시험을 안전하게 치르기 위한 보안 브라우저 환경입니다. 이 소프트웨어는 모든 컴퓨터를 안전한 워크스테이션으로 바꿔줍니다. 이는 모든 유틸리티에 대한 액세스를 제어하고 학생들이 승인되지 않은 리소스를 사용하는 것을 방지합니다.

드림위버 CS6
시각적 웹 개발 도구
