찾다
백엔드 개발파이썬 튜토리얼Python 다중 프로세스에서 생산자와 소비자 모델을 구현하는 방법

Python生产者消费者模型

一、消费模式

生产者消费者模式 是Controlnet网络中特有的一种传输数据的模式。用于两个CPU之间传输数据,即使是不同类型同一厂家的CPU也可以通过设置来使用。

二、传输原理

  • 类似与点对点传送,又略有不同,一个生产者可以对应N个消费者,但是一个消费者只能对应一个生产者;

  • 每个生产者消费者对应一个地址,占一个网络节点,属于预定性数据,在网络中优先级最高;

  • 此模式如果在网络中设置过多会影响网络传输速度,一般用在传输比较重要的信息上,比如设备的启动、停止、故障、急停等等;

  • 在Controlnet网络中节点数是有限制的,最高节点数为99。

  • 如果两个控制器之前建立了多个生产者消费者的连接,只要一个失败,则所有的均失败,将数据整合到用户自定义结构或数组中 ,两个控制器中只保留一个连接。

  • 生产者消费者信息可以通过以太网和Controlnet传输,但是同时只能通过一种途径传输;

  • 建立标签时必须建立在全局变量里面,不能建立在局部变量里标签的大小不能超过500B;

  • 如果生产者几个数据传输到到同一个控制器的的几个消费者中,将几个数据合并在一个用户自定义标签中,可以减少连接数,但合并后的数据将会会用相同的RPI。

  • 生产者消费者标签只能用DINT和REAL,或它们的数组,或用户自定义结构数据,因为对外操作数据必须是32位的,如果有SINT和INT的数据要传输,必须将它们组合在用户自定义结构中传送,生产者和消费者的标签数据格式必须一致,才能确保数据的准确性,如果数据打包后超过了 32位,那么生产者和消费者双方必须使用一个复制缓冲指令,以获得数据的同步,例如Control Logix中的CPS指令。

  • 如果生产者要发送的32位数据,与非Control Logix的对方设备的数据结构不匹配,例如对方是16位的数据,为避免偏差,改为用户自定义结构。

  • 消费者的 RPI必须大于等于网络刷新时间NUT,如果几个消费者请求同一个生产者,则会以最小最快的RPI为准。

Python 다중 프로세스에서 생산자와 소비자 모델을 구현하는 방법

三、实现方式

方法一:

import threading,queue,time
# 创建一个队列,队列最大长度为2
q = queue.Queue(maxsize=2)
def product():
    while True:
        # 生产者往队列塞数据
        q.put('money')
        print('生产了money, 生产时间:', time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()))
def consume():
    while True:
        time.sleep(0.5)
        # 消费者取出数据
        data = q.get()
        print('消费了%s, 消费时间%s' % (data, time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())))
t = threading.Thread(target=product)
t1 = threading.Thread(target=consume)
t.start()
t1.start()

缺点:

实现了多少个消费者consumer进程,就需要在最后往队列中添加多少个None标识,方便生产完毕结束消费者consumer进程。否则,p.get() 不到任务会阻塞子进程,因为while循环,直到队列q中有新的任务加进来,才会再次执行。而我们的生产者只能生产这么多东西,所以相当于程序卡死。

方法二:

from multiprocessing import JoinableQueue,Process
import time
def producer(q):
    for i in range(4):
        time.sleep(0.5)
        f = '生产者:已经生产'
        q.put(f)
        print(f)
    q.join()  # 一直阻塞,等待消耗完所有的数据后才释放
def consumer(name, q):
    while True:
        food = q.get()
        print('\033[消费者:消费了%s\033' % name)
        time.sleep(0.5)
        q.task_done()  # 每次消耗减1
if __name__ == '__main__':
    q = JoinableQueue()  # 创建队列
    # 模拟生产者队列
    p1 = Process(target=producer, args=(q, ))
    p1.start()
    # 模拟消费者队列
    c1 = Process(target=consumer, args=('money', q))
    c1.daemon = True  # 守护进程:主进程结束,子进程也会结束
    c1.start()
    p1.join()  # 阻塞主进程,等到p1子进程结束才往下执行

优点:

  • 使用JoinableQueue组件,是因为JoinableQueue中有两个方法:task_done()和join() 。首先说join()和Process中的join()的效果类似,都是阻塞当前进程,防止当前进程结束。但是JoinableQueue的join()是和task_down()配合使用的。

  • Process中的join()是等到子进程中的代码执行完毕,就会执行主进程join()下面的代码。而JoinableQueue中的join()是等到队列中的任务数量为0的时候才会执行q.join()下面的代码,否则会一直阻塞。

  • task_down()方法是每获取一次队列中的任务,就需要执行一次。直到队列中的任务数为0的时候,就会执行JoinableQueue的join()后面的方法了。所以生产者生产完所有的数据后,会一直阻塞着。不让p1和p2进程结束。等到消费者get()一次数据,就会执行一次task_down()方法,从而队列中的任务数量减1,当数量为0后,执行JoinableQueue的join()后面代码,从而p1和p2进程结束。

  • 因为p1和p2添加了join()方法,所以当子进程中的consumer方法执行完后,才会往下执行。从而主进程结束。因为这里把消费者进程c1和c2 设置成了守护进程,主进程结束的同时,c1和c2 进程也会随之结束,进程都结束了。所以消费者consumer方法也会结束。

위 내용은 Python 다중 프로세스에서 생산자와 소비자 모델을 구현하는 방법의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

성명
이 기사는 亿速云에서 복제됩니다. 침해가 있는 경우 admin@php.cn으로 문의하시기 바랍니다. 삭제
어레이는 파이썬으로 과학 컴퓨팅에 어떻게 사용됩니까?어레이는 파이썬으로 과학 컴퓨팅에 어떻게 사용됩니까?Apr 25, 2025 am 12:28 AM

Arraysinpython, 특히 비밀 복구를위한 ArecrucialInscientificcomputing.1) theaRearedFornumericalOperations, DataAnalysis 및 MachinELearning.2) Numpy'SimplementationIncensuressuressurations thanpythonlists.3) arraysenablequick

같은 시스템에서 다른 파이썬 버전을 어떻게 처리합니까?같은 시스템에서 다른 파이썬 버전을 어떻게 처리합니까?Apr 25, 2025 am 12:24 AM

Pyenv, Venv 및 Anaconda를 사용하여 다양한 Python 버전을 관리 할 수 ​​있습니다. 1) PYENV를 사용하여 여러 Python 버전을 관리합니다. Pyenv를 설치하고 글로벌 및 로컬 버전을 설정하십시오. 2) VENV를 사용하여 프로젝트 종속성을 분리하기 위해 가상 환경을 만듭니다. 3) Anaconda를 사용하여 데이터 과학 프로젝트에서 Python 버전을 관리하십시오. 4) 시스템 수준의 작업을 위해 시스템 파이썬을 유지하십시오. 이러한 도구와 전략을 통해 다양한 버전의 Python을 효과적으로 관리하여 프로젝트의 원활한 실행을 보장 할 수 있습니다.

표준 파이썬 어레이를 통해 Numpy Array를 사용하면 몇 가지 장점은 무엇입니까?표준 파이썬 어레이를 통해 Numpy Array를 사용하면 몇 가지 장점은 무엇입니까?Apr 25, 2025 am 12:21 AM

Numpyarrayshaveseveraladvantagesstandardpythonarrays : 1) thearemuchfasterduetoc 기반 간증, 2) thearemorememory-refficient, 특히 withlargedatasets 및 3) wepferoptizedformationsformationstaticaloperations, 만들기, 만들기

어레이의 균질 한 특성은 성능에 어떤 영향을 미칩니 까?어레이의 균질 한 특성은 성능에 어떤 영향을 미칩니 까?Apr 25, 2025 am 12:13 AM

어레이의 균질성이 성능에 미치는 영향은 이중입니다. 1) 균질성은 컴파일러가 메모리 액세스를 최적화하고 성능을 향상시킬 수 있습니다. 2) 그러나 유형 다양성을 제한하여 비 효율성으로 이어질 수 있습니다. 요컨대, 올바른 데이터 구조를 선택하는 것이 중요합니다.

실행 파이썬 스크립트를 작성하기위한 모범 사례는 무엇입니까?실행 파이썬 스크립트를 작성하기위한 모범 사례는 무엇입니까?Apr 25, 2025 am 12:11 AM

tocraftexecutablepythonscripts, 다음과 같은 비스트 프랙티스를 따르십시오 : 1) 1) addashebangline (#!/usr/bin/envpython3) tomakethescriptexecutable.2) setpermissionswithchmod xyour_script.py.3) organtionewithlarstringanduseifname == "__"

Numpy 배열은 배열 모듈을 사용하여 생성 된 배열과 어떻게 다릅니 까?Numpy 배열은 배열 모듈을 사용하여 생성 된 배열과 어떻게 다릅니 까?Apr 24, 2025 pm 03:53 PM

numpyarraysarebetterfornumericaloperations 및 multi-dimensionaldata, mumemer-efficientArrays

Numpy Array의 사용은 Python에서 어레이 모듈 어레이를 사용하는 것과 어떻게 비교됩니까?Numpy Array의 사용은 Python에서 어레이 모듈 어레이를 사용하는 것과 어떻게 비교됩니까?Apr 24, 2025 pm 03:49 PM

numpyarraysarebetterforheavynumericalcomputing, whilearraymoduleisiMoresuily-sportainedprojectswithsimpledatatypes.1) numpyarraysofferversatively 및 formanceforgedatasets 및 complexoperations.2) Thearraymoduleisweighit 및 ep

CTYPES 모듈은 파이썬의 어레이와 어떤 관련이 있습니까?CTYPES 모듈은 파이썬의 어레이와 어떤 관련이 있습니까?Apr 24, 2025 pm 03:45 PM

ctypesallowscreatingandmanipulatingC-stylearraysinPython.1)UsectypestointerfacewithClibrariesforperformance.2)CreateC-stylearraysfornumericalcomputations.3)PassarraystoCfunctionsforefficientoperations.However,becautiousofmemorymanagement,performanceo

See all articles

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

Video Face Swap

Video Face Swap

완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

뜨거운 도구

WebStorm Mac 버전

WebStorm Mac 버전

유용한 JavaScript 개발 도구

DVWA

DVWA

DVWA(Damn Vulnerable Web App)는 매우 취약한 PHP/MySQL 웹 애플리케이션입니다. 주요 목표는 보안 전문가가 법적 환경에서 자신의 기술과 도구를 테스트하고, 웹 개발자가 웹 응용 프로그램 보안 프로세스를 더 잘 이해할 수 있도록 돕고, 교사/학생이 교실 환경 웹 응용 프로그램에서 가르치고 배울 수 있도록 돕는 것입니다. 보안. DVWA의 목표는 다양한 난이도의 간단하고 간단한 인터페이스를 통해 가장 일반적인 웹 취약점 중 일부를 연습하는 것입니다. 이 소프트웨어는

SublimeText3 영어 버전

SublimeText3 영어 버전

권장 사항: Win 버전, 코드 프롬프트 지원!

에디트플러스 중국어 크랙 버전

에디트플러스 중국어 크랙 버전

작은 크기, 구문 강조, 코드 프롬프트 기능을 지원하지 않음

메모장++7.3.1

메모장++7.3.1

사용하기 쉬운 무료 코드 편집기