준비
이번에는 streamlit
, streamlit-aggrid
및 plotly
모듈을 사용해야 하므로 먼저 pip
를 전달합니다. code code> 명령은 이러한 모듈을 다운로드합니다. streamlit-aggrid
는 주로 페이지에 데이터 테이블을 표시하는 데 사용됩니다streamlit
、streamlit-aggrid
以及plotly
模块,先通过pip
命令将这些模块下载下来,其中streamlit-aggrid
主要是将数据表能够呈现在页面上
pip install streamlit-aggrid pip install plotly
页面的结构
整体页面的结构是左边有一个工具栏,包含了该网页的一些简短介绍、以及一个希望使用者评分和反馈的模块
而右边则的Section1是项目规划文件的模板样式,主要是在CSV文件当中写清楚任务的细节,包括任务名称、任务描述、开始与结束时间等等内容。Section2则是允许用户上传自己的CSV文件,修改CSV文件中项目的内容以及一个可视化的呈现,而Section3则是将上述的内容导出至HTML文件当中去
代码部分
下面便是该页面的代码部分
from st_aggrid import AgGrid import streamlit as st import pandas as pd import numpy as np import plotly.express as px from PIL import Image import io
接下来我们针对左边工具栏的部分进行一个开发,主要是对该页面进行一个简单的介绍以及评分等功能
logo = Image.open(r'wechat_logo.jpg') st.sidebar.image(logo, width=120) with st.sidebar.expander("关于此APP的功能"): st.write(""" 项目的简单介绍) """) with st.sidebar.form(key='columns_in_form',clear_on_submit=True): st.write('反馈') st.write('<style>div.row-widget.stRadio > div{flex-direction:row;} </style>', unsafe_allow_html=True) # 水平方向的按钮 rating=st.radio("打分",('1','2','3','4','5'),index=4) text=st.text_input(label='反馈') submitted = st.form_submit_button('提交') if submitted: st.write('感谢') st.markdown('您的评分是:') st.markdown(rating) st.markdown('您的反馈是:') st.markdown(text)
结果如下图所示
主页面的开发-Section 1
接下去便是主页面的Section 1部分的开发,主要是展示项目CSV文件的样式,包含了哪些列、列名分别是什么等等,代码如下
st.markdown(""" <style> .font { font-size:30px ; font-family: 'Cooper Black'; color: #FF9633;} </style> """, unsafe_allow_html=True) st.markdown('<p class="font">上传您的CSV文件</p>', unsafe_allow_html=True) st.subheader('第一步:下载模板文件') image = Image.open(r'example.png') # 模板文件的截图 st.image(image, caption='确保列名是一致的') @st.cache_data def convert_df(df): return df.to_csv().encode('utf-8') df=pd.read_csv(r'template.csv', encoding='gbk') csv = convert_df(df) st.download_button( label="下载模板", data=csv, file_name='project_template.csv', mime='text/csv', )
我们提供了下载按钮可以让用户一键下载模板文件,最后呈现的样子是这样的
主页页面的开发-Section 2
接下去便是上传我们自己的CSV文件,这里我们用到了streamlit_aggrid
模块,该模块的好处就在于可以对数据表进行一个展示,并且可以对其中的数据进行修改,
st.subheader('Step 2: Upload your project plan file') uploaded_file = st.file_uploader( "上传文件", type=['csv']) if uploaded_file is not None: Tasks = pd.read_csv(uploaded_file, encoding='gbk') Tasks['Start'] = Tasks['Start'].astype('datetime64') Tasks['Finish'] = Tasks['Finish'].astype('datetime64') grid_response = AgGrid( Tasks, editable=True, height=300, width='100%', ) updated = grid_response['data'] df = pd.DataFrame(updated)
output
接下去便是对数据的可视化呈现了,这里是用Plotly
st.subheader('第三部:绘制甘特图') Options = st.selectbox("以下面哪种维度来绘制甘特图:", ['Team', 'Completion Pct'], index=0) if st.button('绘制甘特图'): fig = px.timeline( df, x_start="Start", x_end="Finish", y="Task", color=Options, hover_name="Task Description" ) fig.update_yaxes( autorange="reversed") fig.update_layout( title='Project Plan Gantt Chart', bargap=0.2, height=600, xaxis_title="Date", yaxis_title="Project Name", title_x=0.5, xaxis=dict( tickfont_size=15, tickangle=270, rangeslider_visible=True, side="top", showgrid=True, zeroline=True, showline=True, showticklabels=True, tickformat="%x\n", ) ) fig.update_xaxes(tickangle=0, tickfont=dict(family='Rockwell', color='blue', size=15)) st.plotly_chart(fig, use_container_width=True) # 绘制甘特图至页面上 st.subheader( 'Bonus: 导出至HTML') buffer = io.StringIO() fig.write_html(buffer, include_plotlyjs='cdn') html_bytes = buffer.getvalue().encode() st.download_button( label='Export to HTML', data=html_bytes, file_name='Gantt.html', mime='text/html' ) else: st.write('---')페이지 구조🎜🎜전체 페이지 구조는 툴바가 있다는 것입니다. 왼쪽에는 웹 페이지에 대한 간단한 소개와 사용자가 평가하고 피드백을 제공하기를 바라는 모듈이 있습니다 🎜🎜 오른쪽 섹션 1은 세부 사항을 주로 작성하는 프로젝트 계획 문서의 템플릿 스타일입니다. 작업 이름, 작업 설명, 시작 및 종료 시간 등을 포함하여 CSV 파일의 작업 정보입니다. 섹션2에서는 사용자가 자신의 CSV 파일을 업로드하고, CSV 파일의 항목 내용을 수정하고, 시각적 프레젠테이션을 제공할 수 있으며, 섹션3에서는 위 콘텐츠를 HTML 파일로 내보낼 수 있습니다.🎜🎜코드 부분🎜🎜다음은 페이지 코드 부분입니다🎜 rrreee🎜 다음으로는 주로 페이지에 대한 간단한 소개와 채점 및 기타 기능을 제공하기 위한 왼쪽의 툴바를 개발하겠습니다 🎜rrreee🎜결과는 아래 그림과 같습니다🎜🎜

메인 페이지 개발 - 섹션 1
🎜 다음은 프로젝트 CSV 파일의 스타일, 포함된 열, 열 이름 등을 주로 표시하는 메인 페이지의 섹션 1을 개발하는 것입니다. 코드는 다음과 같습니다🎜rrreee🎜다운로드 버튼을 제공합니다. 사용자가 클릭할 수 있습니다. 템플릿 파일을 다운로드하면 최종 모양은 다음과 같습니다🎜🎜홈 페이지 개발 - 섹션 2
🎜다음 단계는 자체 CSV 파일을 업로드하는 것입니다. 여기서는streamlit_aggrid
를 사용합니다. > 모듈. 이 모듈의 장점은 데이터 테이블을 표시하고 그 안의 데이터를 수정할 수 있다는 것입니다. 🎜rrreee🎜output🎜🎜
Plotly
모듈을 사용하여 그림을 그립니다. 간트 차트는 팀 규모나 프로젝트 완료 진행 상황에 따라 선택하면 됩니다🎜rrreee.위 내용은 Python에서 Gantt 차트 그리기를 구현하는 방법은 무엇입니까?의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

하루에 2 시간 동안 파이썬을 배우는 것으로 충분합니까? 목표와 학습 방법에 따라 다릅니다. 1) 명확한 학습 계획을 개발, 2) 적절한 학습 자원 및 방법을 선택하고 3) 실습 연습 및 검토 및 통합 연습 및 검토 및 통합,이 기간 동안 Python의 기본 지식과 고급 기능을 점차적으로 마스터 할 수 있습니다.

웹 개발에서 Python의 주요 응용 프로그램에는 Django 및 Flask 프레임 워크 사용, API 개발, 데이터 분석 및 시각화, 머신 러닝 및 AI 및 성능 최적화가 포함됩니다. 1. Django 및 Flask 프레임 워크 : Django는 복잡한 응용 분야의 빠른 개발에 적합하며 플라스크는 소형 또는 고도로 맞춤형 프로젝트에 적합합니다. 2. API 개발 : Flask 또는 DjangorestFramework를 사용하여 RESTFULAPI를 구축하십시오. 3. 데이터 분석 및 시각화 : Python을 사용하여 데이터를 처리하고 웹 인터페이스를 통해 표시합니다. 4. 머신 러닝 및 AI : 파이썬은 지능형 웹 애플리케이션을 구축하는 데 사용됩니다. 5. 성능 최적화 : 비동기 프로그래밍, 캐싱 및 코드를 통해 최적화

Python은 개발 효율에서 C보다 낫지 만 C는 실행 성능이 높습니다. 1. Python의 간결한 구문 및 풍부한 라이브러리는 개발 효율성을 향상시킵니다. 2.C의 컴파일 유형 특성 및 하드웨어 제어는 실행 성능을 향상시킵니다. 선택할 때는 프로젝트 요구에 따라 개발 속도 및 실행 효율성을 평가해야합니다.

Python의 실제 응용 프로그램에는 데이터 분석, 웹 개발, 인공 지능 및 자동화가 포함됩니다. 1) 데이터 분석에서 Python은 Pandas 및 Matplotlib를 사용하여 데이터를 처리하고 시각화합니다. 2) 웹 개발에서 Django 및 Flask 프레임 워크는 웹 응용 프로그램 생성을 단순화합니다. 3) 인공 지능 분야에서 Tensorflow와 Pytorch는 모델을 구축하고 훈련시키는 데 사용됩니다. 4) 자동화 측면에서 파이썬 스크립트는 파일 복사와 같은 작업에 사용할 수 있습니다.

Python은 데이터 과학, 웹 개발 및 자동화 스크립팅 필드에 널리 사용됩니다. 1) 데이터 과학에서 Python은 Numpy 및 Pandas와 같은 라이브러리를 통해 데이터 처리 및 분석을 단순화합니다. 2) 웹 개발에서 Django 및 Flask 프레임 워크를 통해 개발자는 응용 프로그램을 신속하게 구축 할 수 있습니다. 3) 자동 스크립트에서 Python의 단순성과 표준 라이브러리가 이상적입니다.

Python의 유연성은 다중 파리가 지원 및 동적 유형 시스템에 반영되며, 사용 편의성은 간단한 구문 및 풍부한 표준 라이브러리에서 나옵니다. 유연성 : 객체 지향, 기능 및 절차 프로그래밍을 지원하며 동적 유형 시스템은 개발 효율성을 향상시킵니다. 2. 사용 편의성 : 문법은 자연 언어에 가깝고 표준 라이브러리는 광범위한 기능을 다루며 개발 프로세스를 단순화합니다.

Python은 초보자부터 고급 개발자에 이르기까지 모든 요구에 적합한 단순성과 힘에 호의적입니다. 다목적 성은 다음과 같이 반영됩니다. 1) 배우고 사용하기 쉽고 간단한 구문; 2) Numpy, Pandas 등과 같은 풍부한 라이브러리 및 프레임 워크; 3) 다양한 운영 체제에서 실행할 수있는 크로스 플랫폼 지원; 4) 작업 효율성을 향상시키기위한 스크립팅 및 자동화 작업에 적합합니다.

예, 하루에 2 시간 후에 파이썬을 배우십시오. 1. 합리적인 학습 계획 개발, 2. 올바른 학습 자원을 선택하십시오. 3. 실습을 통해 학습 된 지식을 통합하십시오. 이 단계는 짧은 시간 안에 Python을 마스터하는 데 도움이 될 수 있습니다.


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

SecList
SecLists는 최고의 보안 테스터의 동반자입니다. 보안 평가 시 자주 사용되는 다양한 유형의 목록을 한 곳에 모아 놓은 것입니다. SecLists는 보안 테스터에게 필요할 수 있는 모든 목록을 편리하게 제공하여 보안 테스트를 더욱 효율적이고 생산적으로 만드는 데 도움이 됩니다. 목록 유형에는 사용자 이름, 비밀번호, URL, 퍼징 페이로드, 민감한 데이터 패턴, 웹 셸 등이 포함됩니다. 테스터는 이 저장소를 새로운 테스트 시스템으로 간단히 가져올 수 있으며 필요한 모든 유형의 목록에 액세스할 수 있습니다.

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

Atom Editor Mac 버전 다운로드
가장 인기 있는 오픈 소스 편집기

MinGW - Windows용 미니멀리스트 GNU
이 프로젝트는 osdn.net/projects/mingw로 마이그레이션되는 중입니다. 계속해서 그곳에서 우리를 팔로우할 수 있습니다. MinGW: GCC(GNU Compiler Collection)의 기본 Windows 포트로, 기본 Windows 애플리케이션을 구축하기 위한 무료 배포 가능 가져오기 라이브러리 및 헤더 파일로 C99 기능을 지원하는 MSVC 런타임에 대한 확장이 포함되어 있습니다. 모든 MinGW 소프트웨어는 64비트 Windows 플랫폼에서 실행될 수 있습니다.
