번역가 | Zhu Xianzhong
Reviewer | Sun Shujuan
전이 학습은 학습되거나 사전 학습된 신경망에 적용되는 방법입니다. 메타 네트워크는 수백만 개의 데이터 포인트를 사용하여 훈련됩니다.
현재 이 기술의 가장 유명한 용도는 심층 신경망을 훈련하는 것입니다. 이 방법은 심층 신경망을 훈련하는 데 더 적은 데이터를 사용할 때 좋은 성능을 보여주기 때문입니다. 실제로 이 기술은 데이터 과학 분야에서도 유용합니다. 왜냐하면 대부분의 실제 데이터에는 일반적으로 강력한 딥 러닝 모델을 훈련하기 위한 수백만 개의 데이터 포인트가 없기 때문입니다.
현재 수백만 개의 데이터 포인트를 사용하여 훈련된 많은 모델이 이미 존재하며 이러한 모델은 최대 정확도로 복잡한 딥 러닝 신경망을 훈련하는 데 사용할 수 있습니다.
이 튜토리얼에서는 전이 학습 기술을 사용하여 심층 신경망을 훈련하는 방법의 전체 프로세스를 배우게 됩니다.
Keras 프로그램을 사용하여 전이 학습 구현
심층 신경망을 구축하거나 학습시키기 전에 전이 학습에 사용할 수 있는 옵션이 무엇인지, 프로젝트에 맞게 복잡한 심층 신경망을 학습하는 데 사용해야 하는 옵션이 무엇인지 파악해야 합니다.
Keras 애플리케이션은 예측, 특징 추출, 미세 조정에 사용할 수 있는 사전 훈련된 가중치를 제공하는 고급 딥 러닝 모델입니다. Keras 라이브러리에는 바로 사용할 수 있는 모델이 많이 내장되어 있으며 인기 있는 모델 중 일부는 다음과 같습니다.
- 사전 훈련된 가중치와 함께 사용할 수 있는 모델. 해당 모델에 대한 보다 구체적인 내용은 Keras 공식 홈페이지를 참고하시기 바랍니다.
- 이 기사에서는 전이 학습에서 MobileNet 모델
- 을 적용하는 방법을 알아봅니다.
- 딥 러닝 모델 훈련
딥 러닝 모델 구축 프로세스를 시작하려면 먼저 데이터를 준비해야 합니다. Kaggle이라는 웹사이트를 방문하면 수백만 개의 데이터 세트 중에서 올바른 데이터 세트를 쉽게 선택할 수 있습니다. 물론 딥 러닝이나 머신 러닝 모델을 구축하는 데 사용할 수 있는 데이터 세트를 제공하는 다른 웹사이트도 많이 있습니다.
하지만 이 글에서 사용할 데이터 세트는 Kaggle 웹사이트에서 제공하는미국 수화 숫자 데이터 세트
에서 가져온 것입니다.데이터 전처리
데이터세트를 다운로드하여 로컬 저장소에 저장한 후 이제 데이터 준비, 데이터를 기차 디렉터리로 분할, 유효한 디렉터리 및 테스트와 같은 데이터세트에 대한 일부 전처리를 수행할 차례입니다. 디렉토리, 경로 정의 및 교육 목적으로 배치 생성 등 데이터 세트를 다운로드하면 0부터 9까지의 데이터 디렉터리가 포함되며, 입력 이미지, 출력 이미지에 해당하는 하위 폴더 3개, CSV라는 폴더가 있습니다.다음으로 각 디렉터리에서 출력 이미지와 CSV 폴더를 삭제하고 입력 이미지 폴더의 내용을 기본 디렉터리로 옮긴 후 입력 이미지 폴더를 삭제합니다.
이제 데이터세트의 각 마스터 디렉터리에는 500개의 이미지가 있으며, 모두 보관하도록 선택할 수 있습니다. 그러나 이 기사에서는 데모 목적으로 각 디렉터리의 이미지 200개만 사용되었습니다. 마지막으로 데이터 세트의 구조는 아래와 같습니다.데이터 세트의 폴더 구조
데이터 세트 분할
이제 데이터 세트를 train, valid 및 test의 세 가지 하위 디렉터리로 분할하는 것부터 시작해 보겠습니다.
- train 디렉토리에는 학습 패턴 및 불규칙성에 대한 모델의 입력 데이터 역할을 하는 학습 데이터가 포함됩니다.
- 유효한 디렉터리에는 모델에 입력될 검증 데이터가 포함되며 모델에서 볼 수 있는 첫 번째 보이지 않는 데이터가 되어 최대 정확도를 달성하는 데 도움이 됩니다.
- 테스트 디렉터리에는 모델을 테스트하는 데 사용되는 테스트 데이터가 포함됩니다.
먼저 코드에서 추가로 사용될 라이브러리를 가져오겠습니다.
# 导入需要的库 import os import shutil import random
아래는 필요한 디렉터리를 생성하고 데이터를 특정 디렉터리로 이동하는 코드입니다.
#创建三个子目录:train、valid和test,并把数据组织到其下 os.chdir('D:SACHINJupyterHand Sign LanguageHand_Sign_Language_DL_ProjectAmerican-Sign-Language-Digits-Dataset') #如果目录不存在则创建相应的子目录 if os.path.isdir('train/0/') is False: os.mkdir('train') os.mkdir('valid') os.mkdir('test') for i in range(0, 10): #把0-9子目录移动到train子目录下 shutil.move(f'{i}', 'train') os.mkdir(f'valid/{i}') os.mkdir(f'test/{i}') #从valid子目录下取90个样本图像 valid_samples = random.sample(os.listdir(f'train/{i}'), 90) for j in valid_samples: #把样本图像从子目录train移动到valid子目录 shutil.move(f'train/{i}/{j}', f'valid/{i}') #从test子目录下取90个样本图像 test_samples = random.sample(os.listdir(f'train/{i}'), 10) for k in test_samples: #把样本图像从子目录train移动到test子目录 shutil.move(f'train/{i}/{k}', f'test/{i}') os.chdir('../..')
위 코드에서는 먼저 로컬 저장소의 데이터 세트에 해당하는 디렉터리를 변경한 다음 train/0 디렉터리가 이미 존재하는지 확인합니다. 그렇지 않은 경우 train, valid 및 test 하위 디렉터리를 각각 만듭니다.
그런 다음 0~9의 하위 디렉터리를 만들고 모든 데이터를 train 디렉터리로 이동한 다음 valid 및 test 하위 디렉터리 아래에 0~9의 하위 디렉터리를 만듭니다.
그런 다음 train 디렉터리 내의 하위 디렉터리 0~9를 반복하고 각 하위 디렉터리에서 무작위로 90개의 이미지 데이터를 가져와 유효한 디렉터리 내의 해당 하위 디렉터리로 이동합니다.
테스트 디렉토리 test도 마찬가지입니다.
【보충】 Python에서 고급 파일 작업을 수행하는 Shutil 모듈(한 디렉터리에서 다른 디렉터리로 파일이나 폴더를 수동으로 복사하거나 이동하는 것은 매우 고통스러운 일이 될 수 있습니다. 자세한 팁은 https://medium.com 기사를 참조하세요. /@geekpython/수행-고수준-파일-작업-in-python-shutil-모듈-dfd71b149d32).
각 디렉터리에 대한 경로 정의
필요한 디렉터리를 생성한 후 이제 train, valid 및 test라는 세 가지 하위 디렉터리에 대한 경로를 정의해야 합니다.
#为三个子目录train、valid和test分别指定路径 train_path = 'D:/SACHIN/Jupyter/Hand Sign Language/Hand_Sign_Language_DL_Project/American-Sign-Language-Digits-Dataset/train' valid_path = 'D:/SACHIN/Jupyter/Hand Sign Language/Hand_Sign_Language_DL_Project/American-Sign-Language-Digits-Dataset/valid' test_path = 'D:/SACHIN/Jupyter/Hand Sign Language/Hand_Sign_Language_DL_Project/American-Sign-Language-Digits-Dataset/test'
Preprocessing
사전 학습된 딥 러닝 모델에는 사전 처리된 데이터가 일부 필요하며 이는 교육에 매우 적합합니다. 따라서 데이터는 사전 학습된 모델에 필요한 형식이어야 합니다.
전처리를 적용하기 전에 TensorFlow와 해당 유틸리티를 가져와서 코드에서 추가로 사용하겠습니다.
#导入TensorFlow及其实用程序 import tensorflow as tf from tensorflow import keras from tensorflow.keras.layers import Dense, Activation from tensorflow.keras.optimizers import Adam from tensorflow.keras.metrics import categorical_crossentropy from tensorflow.keras.preprocessing.image import ImageDataGenerator from tensorflow.keras.preprocessing import image from tensorflow.keras.models import Model from tensorflow.keras.models import load_model
#创建训练、校验和测试图像的批次,并使用Mobilenet的预处理模型进行预处理 train_batches = ImageDataGenerator(preprocessing_function=tf.keras.applications.mobilenet.preprocess_input).flow_from_directory( directory=train_path, target_size=(224,224), batch_size=10, shuffle=True) valid_batches = ImageDataGenerator(preprocessing_function=tf.keras.applications.mobilenet.preprocess_input).flow_from_directory( directory=valid_path, target_size=(224,224), batch_size=10, shuffle=True) test_batches = ImageDataGenerator(preprocessing_function=tf.keras.applications.mobilenet.preprocess_input).flow_from_directory( directory=test_path, target_size=(224,224), batch_size=10, shuffle=False)
우리는 MobileNet 모델에서 제공하는 이미지를 전처리하는 preprocessing_function 매개변수를 사용하는 ImageDatagenerator를 사용했습니다.
다음으로, MobileNet 모델은 224x224 크기의 이미지에 대해 훈련되었기 때문에 훈련할 이미지의 디렉터리 및 크기에 대한 경로를 제공하는 flow_from_directory 함수를 호출합니다.
다음으로 배치 크기를 정의합니다. 한 번의 반복으로 처리할 수 있는 이미지 수를 정의한 다음 이미지 처리 순서를 무작위로 섞습니다. 여기서는 테스트 데이터가 훈련에 사용되지 않으므로 테스트 데이터의 이미지를 무작위로 섞지 않습니다.
Jupyter 노트북이나 Google Colab에서 위 코드를 실행하면 다음과 같은 결과를 볼 수 있습니다.
위 코드의 출력
ImageDataGenerator의 일반적인 응용 시나리오는 데이터를 증대시키는 것입니다. 다음은 Keras 프레임워크에서 ImageDataGenerator를 사용하여 데이터 증대를 수행하는 방법에 대한 안내입니다.
모델 만들기훈련 및 검증 데이터를 모델에 맞추기 전에 딥 러닝 모델 MobileNet은 출력 레이어를 추가하고, 불필요한 레이어를 제거하고, 일부 레이어를 미세 조정을 위해 훈련할 수 없도록 만들어 더 나은 정확도를 달성해야 합니다.
다음 코드는 Keras에서 MobileNet 모델을 다운로드하여 mobile 변수에 저장합니다. 다음 코드 조각을 처음 실행할 때 인터넷에 연결되어 있어야 합니다.
mobile = tf.keras.applications.mobilenet.MobileNet()
如果您运行以下代码,那么您将看到模型的摘要信息,在其中你可以看到一系列神经网络层的输出信息。
mobile.summary()
现在,我们将在模型中添加以10为单位的全连接输出层(也称“稠密层”)——因为从0到9将有10个输出。此外,我们从MobileNet模型中删除了最后六个层。
# 删除最后6层并添加一个输出层 x = mobile.layers[-6].output output = Dense(units=10, activation='softmax')(x)
然后,我们将所有输入和输出层添加到模型中。
model = Model(inputs=mobile.input, outputs=output)
现在,我们将最后23层设置成不可训练的——其实这是一个相对随意的数字。一般来说,这一具体数字是通过多次试验和错误获得的。该代码的唯一目的是通过使某些层不可训练来提高精度。
#我们不会训练最后23层——这里的23是一个相对随意的数字 for layer in mobile.layers[:-23]: layer.trainable=False
如果您看到了微调模型的摘要输出,那么您将注意到与前面看到的原始摘要相比,不可训练参数和层的数量存在一些差异。
model.summary()
接下来,我们要编译名为Adam的优化器,选择学习率为0.0001,以及损失函数,还有衡量模型的准确性的度量参数。
model.compile(optimizer=Adam(learning_rate=0.0001), loss='categorical_crossentropy', metrics=['accuracy'])
现在是准备好模型并根据训练和验证数据来开始训练的时候了。在下面的代码中,我们提供了训练和验证数据以及训练的总体轮回数。详细信息只是为了显示准确性进度,在这里您可以指定一个数字参数值为0、1或者2。
# 运行共10个轮回(epochs) model.fit(x=train_batches, validation_data=valid_batches, epochs=10, verbose=2)
如果您运行上面的代码片断,那么您将看到训练数据丢失和准确性的轮回的每一步的输出内容。对于验证数据,您也能够看到这样的输出结果。
显示有精度值的训练轮回步数
存储模型
该模型现在已准备就绪,准确度得分为99%。现在请记住一件事:这个模型可能存在过度拟合,因此有可能对于给定数据集图像以外的图像表现不佳。
#检查模型是否存在;否则,保存模型 if os.path.isfile("D:/SACHIN/Models/Hand-Sign-Digit-Language/digit_model.h5") is False: model.save("D:/SACHIN/Models/Hand-Sign-Digit-Language/digit_model.h5")
上面的代码将检查是否已经有模型的副本。如果没有,则通过调用save函数在指定的路径中保存模型。
测试模型
至此,模型已经经过训练,可以用于识别图像了。本节将介绍加载模型和编写准备图像、预测结果以及显示和打印预测结果的函数。
在编写任何代码之前,需要导入一些将在代码中进一步使用的必要的库。
import numpy as np import matplotlib.pyplot as plt from PIL import Image
加载定制的模型
对图像的预测将使用上面使用迁移学习技术创建的模型进行。因此,我们首先需要加载该模型,以供后面使用。
my_model = load_model("D:/SACHIN/Models/Hand-Sign-Digit-Language/digit_model.h5")
在此,我们通过使用load_model函数,实现从指定路径加载模型,并将其存储在my_model变量中,以便在后面代码中进一步使用。
准备输入图像
在向模型提供任何用于预测或识别的图像之前,我们需要提供模型所需的格式。
def preprocess_img(img_path): open_img = image.load_img(img_path, target_size=(224, 224)) img_arr = image.img_to_array(open_img)/255.0 img_reshape = img_arr.reshape(1, 224,224,3) return img_reshape
首先,我们要定义一个获取图像路径的函数preprocess_img,然后使用image实用程序中的load_img函数加载该图像,并将目标大小设置为224x224。然后将该图像转换成一个数组,并将该数组除以255.0,这样就将图像的像素值转换为0和1,然后将图像数组重新调整为形状(224,224,3),最后返回转换形状后的图像。
编写预测函数
def predict_result(predict): pred = my_model.predict(predict) return np.argmax(pred[0], axis=-1)
这里,我们定义了一个函数predict_result,它接受predict参数,此参数基本上是一个预处理的图像。然后,我们调用模型的predict函数来预测结果。最后,从预测结果中返回最大值。
显示与预测图像
首先,我们将创建一个函数,它负责获取图像的路径,然后显示图像和预测结果。
#显示和预测图像的函数 def display_and_predict(img_path_input): display_img = Image.open(img_path_input) plt.imshow(display_img) plt.show() img = preprocess_img(img_path_input) pred = predict_result(img) print("Prediction: ", pred)
上面这个函数display_and_predict首先获取图像的路径并使用PIL库中的Image.open函数打开该图像,然后使用matplotlib库来显示图像,然后将图像传递给preprep_img函数以便输出预测结果,最后使用predict_result函数获得结果并最终打印。
img_input = input("Enter the path of an image: ") display_and_predict(img_input)
如果您运行上面的程序片断并输入数据集中图像的路径,那么您将得到所期望的输出。
预测结果示意图
请注意,到目前为止该模型是使用迁移学习技术成功创建的,而无需编写任何一系列神经网络层相关代码。
现在,这个模型可以用于开发能够进行图像识别的Web应用程序了。文章的最后所附链接处提供了如何将该模型应用到Flask应用程序中的完整实现源码。
结论
本文中我们介绍了使用预先训练的模型或迁移学习技术来制作一个定制的深度学习模型的过程。
到目前为止,您已经了解了创建一个完整的深度学习模型所涉及的每一步。归纳起来看,所使用的总体步骤包括:
- 准备数据集
- 预处理数据
- 创建模型
- 保存自定义模型
- 测试自定义模型
最后,您可以从GitHub上获取本文示例项目完整的源代码。
译者介绍
朱先忠,51CTO社区编辑,51CTO专家博客、讲师,潍坊一所高校计算机教师,自由编程界老兵一枚。
原文标题:Trained A Custom Deep Learning Model Using A Transfer Learning Technique,作者:Sachin Pal
위 내용은 전이학습 기법을 활용한 딥러닝 모델 맞춤형 훈련의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!
![chatgpt를 사용할 수 없습니다! 즉시 테스트 할 수있는 원인과 솔루션 설명 [최신 2025]](https://img.php.cn/upload/article/001/242/473/174717025174979.jpg?x-oss-process=image/resize,p_40)
chatgpt에 액세스 할 수 없습니까? 이 기사는 다양한 실용적인 솔루션을 제공합니다! 많은 사용자가 매일 chatgpt를 사용할 때 액세스 할 수 없거나 느린 응답과 같은 문제가 발생할 수 있습니다. 이 기사는 다양한 상황에 따라 이러한 문제를 단계별로 해결하도록 안내합니다. Chatgpt의 접근성 및 예비 문제 해결의 원인 먼저 문제가 OpenAI 서버 측 또는 사용자의 네트워크 또는 장치 문제에 있는지 확인해야합니다. 문제 해결을 위해 아래 단계를 따르십시오. 1 단계 : OpenAI의 공식 상태를 확인하십시오 chatgpt 서비스가 정상적으로 실행 중인지 확인하려면 OpenAi 상태 페이지 (status.openai.com)를 방문하십시오. 빨간색 또는 노란색 알람이 표시되면 열린 것을 의미합니다.

2025 년 5 월 10 일, MIT 물리학 자 Max Tegmark는 AI Labs가 인공 초 지능을 방출하기 전에 Oppenheimer의 삼위 일체 테스트 미적분학을 모방해야한다고 Guardian에게 말했다. “내 평가는 'Compton Constant', 인종이

AI 음악 제작 기술은 매일 매일 변화하고 있습니다. 이 기사는 Chatgpt와 같은 AI 모델을 예로 사용하여 AI를 사용하여 음악 제작을 지원하고 실제 사례에 대해 설명하는 방법을 자세히 설명합니다. 우리는 Sunoai, Hugging Face의 AI Jukebox 및 Python 's Music21 Library를 통해 음악을 만드는 방법을 소개합니다. 이러한 기술을 통해 모든 사람은 독창적 인 음악을 쉽게 만들 수 있습니다. 그러나 AI 생성 컨텐츠의 저작권 문제는 무시할 수 없으며 사용할 때는 신중해야합니다. 음악 분야에서 AI의 무한한 가능성을 모색 해 봅시다! OpenAi의 최신 AI 에이전트 "OpenAi Deep Research"가 소개됩니다. [chatgpt] ope

ChatGpt-4의 출현은 AI 응용 프로그램의 가능성을 크게 확장했습니다. GPT-3.5와 비교하여 ChatGpt-4는 상당히 개선되었습니다. 강력한 맥락 이해력이 있으며 이미지를 인식하고 생성 할 수도 있습니다. 그것은 보편적 인 AI 조수입니다. 비즈니스 효율성 향상 및 창출 지원과 같은 많은 분야에서 큰 잠재력을 보여주었습니다. 그러나 동시에, 우리는 또한 사용의 예방 조치에주의를 기울여야합니다. 이 기사에서는 ChatGpt-4의 특성을 자세히 설명하고 다양한 시나리오에 대한 효과적인 사용 방법을 소개합니다. 이 기사에는 최신 AI 기술을 최대한 활용하는 기술이 포함되어 있습니다. OpenAi의 최신 AI 에이전트, "OpenAi Deep Research"에 대한 자세한 내용은 아래 링크를 클릭하십시오.

chatgpt 앱 : AI 조수와 함께 창의력을 발휘하십시오! 초보자 가이드 Chatgpt 앱은 쓰기, 번역 및 질문 답변을 포함하여 광범위한 작업을 처리하는 혁신적인 AI 어시스턴트입니다. 창의적인 활동과 정보 수집에 유용한 끝없는 가능성이있는 도구입니다. 이 기사에서는 초보자를위한 이해하기 쉬운 방법, ChatGpt 스마트 폰 앱을 설치하는 방법, 음성 입력 기능 및 플러그인과 같은 앱의 고유 한 기능 및 앱을 사용할 때 염두에 두는 포인트에 이르기까지 설명합니다. 또한 플러그인 제한 및 장치 간 구성 동기화를 자세히 살펴 보겠습니다.

Chatgpt Chinese 버전 : 중국 AI 대화의 새로운 경험 잠금 해제 Chatgpt는 전 세계적으로 인기가 있습니다. 중국어 버전도 제공한다는 것을 알고 있습니까? 이 강력한 AI 도구는 일상적인 대화를 지원할뿐만 아니라 전문적인 콘텐츠를 처리하며 단순화되고 전통적인 중국어와 호환됩니다. 중국의 사용자이든 중국어를 배우는 친구이든 상관없이 혜택을 누릴 수 있습니다. 이 기사는 계정 설정, 중국 신속한 단어 입력, 필터 사용 및 다양한 패키지 선택을 포함하여 ChatGpt 중국어 버전을 사용하는 방법을 자세히 소개하고 잠재적 위험 및 응답 전략을 분석합니다. 또한 ChatGpt 중국어 버전을 다른 중국 AI 도구와 비교하여 장점과 응용 프로그램 시나리오를 더 잘 이해할 수 있도록 도와줍니다. Openai의 최신 AI 인텔리전스

이것들은 생성 AI 분야의 다음 도약으로 생각 될 수 있으며, 이는 우리에게 Chatgpt 및 기타 대규모 모델 챗봇을 제공했습니다. 단순히 질문에 대답하거나 정보를 생성하는 대신, 우리를 대신하여 조치를 취할 수 있습니다.

ChatGpt를 사용한 효율적인 다중 계정 관리 기술 | 비즈니스와 사생활 사용 방법에 대한 철저한 설명! Chatgpt는 다양한 상황에서 사용되지만 일부 사람들은 여러 계정 관리에 대해 걱정할 수 있습니다. 이 기사는 ChatGpt에 대한 여러 계정을 만드는 방법, 사용할 때 수행 할 작업 및 안전하고 효율적으로 작동하는 방법을 자세히 설명합니다. 또한 비즈니스와 개인 사용의 차이, OpenAI의 이용 약관을 준수하는 것과 같은 중요한 점을 다루며 여러 계정을 안전하게 활용하는 데 도움이되는 안내서를 제공합니다. Openai


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

Dreamweaver Mac版
시각적 웹 개발 도구

SublimeText3 영어 버전
권장 사항: Win 버전, 코드 프롬프트 지원!

ZendStudio 13.5.1 맥
강력한 PHP 통합 개발 환경

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구