찾다
기술 주변기기일체 포함대형 모델은 공식과 참고자료를 포함하여 자체적으로 논문을 '작성'할 수 있습니다. 이제 평가판이 온라인에 제공됩니다.

최근에는 다양한 주제 분야의 연구가 발전하면서 과학 문헌과 데이터가 폭발적으로 증가하여 학계 연구자들이 많은 양의 정보에서 유용한 통찰력을 발견하는 것이 점점 더 어려워지고 있습니다. 일반적으로 사람들은 과학적 지식을 얻기 위해 검색엔진을 사용하지만, 검색엔진은 과학지식을 자율적으로 정리할 수 없습니다.

이제 Meta AI 연구팀이 과학적 지식을 저장, 결합, 추론할 수 있는 새로운 대규모 언어 모델인 Galactica를 제안했습니다.

대형 모델은 공식과 참고자료를 포함하여 자체적으로 논문을 '작성'할 수 있습니다. 이제 평가판이 온라인에 제공됩니다.

  • 논문 주소: https://galactica.org/static/paper.pdf
  • 시험판 주소: https://galactica.org/

Galaxica 모델 얼마나 강력한가요? 자체적으로 리뷰 논문을 요약하고 요약할 수 있습니다.

대형 모델은 공식과 참고자료를 포함하여 자체적으로 논문을 '작성'할 수 있습니다. 이제 평가판이 온라인에 제공됩니다.

또한 항목에 대한 백과사전 쿼리를 생성할 수도 있습니다.

대형 모델은 공식과 참고자료를 포함하여 자체적으로 논문을 '작성'할 수 있습니다. 이제 평가판이 온라인에 제공됩니다.

제기된 질문에 대한 지식이 풍부한 답변 제공:

대형 모델은 공식과 참고자료를 포함하여 자체적으로 논문을 '작성'할 수 있습니다. 이제 평가판이 온라인에 제공됩니다.

이 작업은 인류학자에게는 여전히 어려운 일이지만 Galactica는 이 작업을 잘 완료했습니다. Turing Award 수상자 Yann LeCun도 자신의 칭찬을 트윗했습니다.

대형 모델은 공식과 참고자료를 포함하여 자체적으로 논문을 '작성'할 수 있습니다. 이제 평가판이 온라인에 제공됩니다.

Galactica 모델의 구체적인 세부 사항을 살펴보겠습니다.

모델 개요

Galactica 모델은 4,800만 개 이상의 논문, 교과서 및 유인물, 수백만 개의 화합물 및 단백질 지식, 과학 자료를 포함하여 논문, 참고 자료, 지식 기반 및 기타 다양한 소스로 구성된 대규모 과학 자료에서 훈련되었습니다. 웹사이트, 백과사전 등 선별되지 않은 웹 크롤러 기반 텍스트에 의존하는 기존 언어 모델과 달리 Galactica 교육에 사용되는 코퍼스는 고품질이며 고도로 선별되어 있습니다. 이 연구는 과적합 없이 여러 시대에 대해 모델을 훈련했으며, 여기서 반복 토큰을 사용하여 업스트림 및 다운스트림 작업의 성능이 향상되었습니다.

Galactica는 다양한 과학 작업에서 기존 모델보다 성능이 뛰어납니다. LaTeX 방정식과 같은 기술 지식 탐색 작업에서 Galactica와 GPT-3의 성능은 68.2% VS 49.0%입니다. Galactica는 또한 추론 능력이 뛰어나 수학적 MMLU 벤치마크에서 Chinchilla를 크게 능가합니다.

Galactica는 공통 코퍼스에 대한 교육을 받지 않았음에도 불구하고 BIG 벤치에서 BLOOM 및 OPT-175B보다 성능이 뛰어납니다. 또한 PubMedQA 및 MedMCQA 개발과 같은 다운스트림 작업에서 77.6%와 52.9%의 새로운 최고 성능을 달성했습니다.

간단히 말하면, 연구는 내부 작동을 모방하기 위해 특별한 토큰에 단계별 추론을 캡슐화합니다. 이를 통해 연구원들은 아래 Galactica의 시험 인터페이스에 표시된 것처럼 자연어를 사용하여 모델과 상호 작용할 수 있습니다.

대형 모델은 공식과 참고자료를 포함하여 자체적으로 논문을 '작성'할 수 있습니다. 이제 평가판이 온라인에 제공됩니다.

Galactica는 텍스트 생성 외에도 화학 공식 및 단백질 서열과 관련된 다중 모드 작업도 수행할 수 있다는 점을 언급할 가치가 있습니다. 이는 약물 발견 분야에 기여할 것입니다.

구현 세부 정보

이 기사의 자료에는 논문, 참고 자료, 백과사전 및 기타 과학 자료에서 가져온 1,060억 개의 토큰이 포함되어 있습니다. 본 연구에는 자연어 자원(논문, 참고서)과 자연의 서열(단백질 서열, 화학적 형태)이 모두 포함되어 있다고 할 수 있습니다. 코퍼스의 세부 사항은 표 1과 2에 나와 있습니다.

대형 모델은 공식과 참고자료를 포함하여 자체적으로 논문을 '작성'할 수 있습니다. 이제 평가판이 온라인에 제공됩니다.

이제 말뭉치가 생겼으니 다음 단계는 데이터를 조작하는 방법입니다. 일반적으로 토큰화의 설계는 매우 중요합니다. 예를 들어, 단백질 서열이 아미노산 잔기 측면에서 작성된 경우 문자 기반 토큰화가 적합합니다. 토큰화를 달성하기 위해 본 연구에서는 다양한 방식으로 특화된 토큰화를 수행했습니다. 구체적인 표현에는 다음이 포함되지만 이에 국한되지는 않습니다.

  • 참조: 특수 참조 토큰 [START_REF] 및 [END_REF]를 사용하여 참조를 래핑합니다.
  • 단계별 추론: 작업 메모리 토큰을 사용하여 캡슐화합니다. 단계별 추론 및 시뮬레이션 내부 작업 메모리 컨텍스트
  • 숫자: 숫자를 별도의 토큰으로 나눕니다. 예를 들어 737612.62 → 7,3,7,6,1,2,.,6,2;
  • SMILES 수식: 시퀀스를 [START_SMILES] 및 [END_SMILES]로 래핑하고 문자 기반 토큰화를 적용합니다. 마찬가지로 이 연구에서는 [START_I_SMILES] 및 [END_I_SMILES]를 사용하여 이성체 SMILES를 나타냅니다. 예: C(C(=O)O)N→C, (,C,(,=,O,),O,),N
  • DNA 시퀀스: 각 뉴클레오티드에 문자 기반 토큰화 적용 염기는 토큰으로 간주되며 시작 토큰은 [START_DNA] 및 [END_DNA]입니다. 예를 들어 CGGTACCCTC→C, G, G, T, A, C, C, C, T, C입니다.

아래 그림 4는 논문에 대한 참조 처리의 예를 보여줍니다. 참조를 처리할 때 전역 식별자와 특수 토큰 [START_REF] 및 [END_REF]를 사용하여 참조 위치를 나타냅니다.

대형 모델은 공식과 참고자료를 포함하여 자체적으로 논문을 '작성'할 수 있습니다. 이제 평가판이 온라인에 제공됩니다.

데이터 세트가 처리된 후 다음 단계는 이를 구현하는 방법입니다. Galactica는 Transformer 아키텍처를 기반으로 다음과 같이 수정했습니다.

  • GeLU 활성화: 다양한 크기의 모델에 GeLU 활성화를 사용합니다.
  • 컨텍스트 창: 다양한 크기의 모델에는 2048 길이의 컨텍스트 창을 사용합니다.
  • 편향 없음: PaLM을 따르며 밀도가 높은 커널 또는 레이어 사양에 편향이 사용되지 않습니다.
  • 위치 임베딩 학습: 모델에 대한 위치 임베딩 학습
  • 용어집: ​​BPE를 사용하여 용어집 작성 50,000개의 토큰이 포함되어 있습니다.

표 5에는 다양한 크기와 훈련 하이퍼파라미터의 모델이 나열되어 있습니다.

대형 모델은 공식과 참고자료를 포함하여 자체적으로 논문을 '작성'할 수 있습니다. 이제 평가판이 온라인에 제공됩니다.

실험

중복 토큰은 무해한 것으로 간주됩니다.

그림 6에서 볼 수 있듯이 4번의 훈련 이후 검증 손실은 계속해서 감소합니다. 120B 매개변수를 가진 모델은 다섯 번째 에포크가 시작될 때만 과적합되기 시작합니다. 기존 연구에 따르면 중복 토큰이 성능에 해로울 수 있다는 사실이 밝혀졌기 때문에 이는 예상치 못한 일입니다. 또한 연구에서는 30B 및 120B 모델이 검증 손실이 정체(또는 증가)된 후 감소하는 획기적인 이중 감소 효과를 나타냄을 발견했습니다. 이 효과는 각 시대마다 더욱 강해지며, 특히 훈련이 끝난 120B 모델의 경우 더욱 두드러집니다.

그림 8 결과는 실험에서 과적합의 징후가 없음을 보여 주며, 이는 반복된 토큰이 다운스트림 및 업스트림 작업의 성능을 향상시킬 수 있음을 보여줍니다. heculse 기타 결과 ing 타이핑 공식은 너무 느립니다. 이제 프롬프트로 라텍스를 생성 할 수 있습니다. 화학 반응, Galactica 생성물의 경우 모델은 반응물만을 기준으로 추론할 수 있으며 결과는 다음과 같습니다.

대형 모델은 공식과 참고자료를 포함하여 자체적으로 논문을 '작성'할 수 있습니다. 이제 평가판이 온라인에 제공됩니다.

일부 다른 결과는 표 7에 보고됩니다.

갤럭티카의 추론 능력. 본 연구는 MMLU 수학 벤치마크에서 먼저 평가되었으며 평가 결과는 표 8에 보고되어 있습니다. Galactica는 더 큰 기본 모델에 비해 강력한 성능을 발휘하며 토큰을 사용하면 더 작은 30B Galactica 모델에서도 Chinchilla의 성능이 향상되는 것으로 보입니다.

이 연구에서는 Galactica의 추론 기능을 더 자세히 탐색하기 위해 MATH 데이터 세트도 평가했습니다.

대형 모델은 공식과 참고자료를 포함하여 자체적으로 논문을 '작성'할 수 있습니다. 이제 평가판이 온라인에 제공됩니다.

실험 결과에서 결론을 내릴 수 있습니다. Galactica는 사고 연결 및 유도 측면에서 기본 PaLM보다 훨씬 뛰어납니다. 모델. 이는 Galactica가 수학적 작업을 처리하는 데 더 나은 선택임을 시사합니다. 다운스트림 작업에 대한

평가 결과는 표 10에 나와 있습니다. Galactica는 다른 언어 모델보다 성능이 훨씬 뛰어나며 대부분의 작업에서 더 큰 모델보다 성능이 뛰어납니다(Gopher 280B). 성능 차이는 Chinchilla의 차이보다 크며, 특히 고등학교 과목과 덜 수학적, 기억 집약적인 작업 등 하위 작업에서 더 강한 것으로 보입니다. 대조적으로 Galactica는 수학과 대학원 수준의 작업에서 더 나은 성과를 거두는 경향이 있습니다.

대형 모델은 공식과 참고자료를 포함하여 자체적으로 논문을 '작성'할 수 있습니다. 이제 평가판이 온라인에 제공됩니다.

이 연구는 또한 입력 맥락에 따라 인용을 예측하는 Chinchilla의 능력을 평가했습니다. 이는 Chinchilla의 과학 문헌 정리 능력에 대한 중요한 테스트입니다. 결과는 다음과 같습니다.

더 많은 실험적인 내용은 원문을 참고해주세요.

위 내용은 대형 모델은 공식과 참고자료를 포함하여 자체적으로 논문을 '작성'할 수 있습니다. 이제 평가판이 온라인에 제공됩니다.의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

성명
이 기사는 51CTO.COM에서 복제됩니다. 침해가 있는 경우 admin@php.cn으로 문의하시기 바랍니다. 삭제
AI 에이전트를 사용하여 개인화 된 뉴스 다이제스트를 만듭니다AI 에이전트를 사용하여 개인화 된 뉴스 다이제스트를 만듭니다Apr 12, 2025 am 11:18 AM

소개 대형 언어 모델 (LLM)의 기능은 빠르게 발전하고 있습니다. 그들은 우리가 다양한 LLM 응용 프로그램을 구축 할 수있게합니다. 작업 자동화에서 워크 플로 최적화에 이르기까지 다양합니다. 흥미로운 응용 프로그램 중 하나입니다

미국 AI 정책은'안전'에서'보안'에 이르기까지 급격히 피벗됩니다.미국 AI 정책은'안전'에서'보안'에 이르기까지 급격히 피벗됩니다.Apr 12, 2025 am 11:15 AM

도널드 트럼프 대통령은 조 비덴 전 대통령의 AI 행정 명령을 철회했다.

데이터베이스의 비정규 화는 무엇입니까?데이터베이스의 비정규 화는 무엇입니까?Apr 12, 2025 am 11:10 AM

소개 매 초마다 바쁜 카페를 운영한다고 상상해보십시오. 별도의 인벤토리 및 주문 목록을 지속적으로 확인하는 대신 모든 주요 세부 사항을 읽기 쉬운 보드에 통합합니다. 이것은 denormaliza와 유사합니다

콘텐츠 중재를위한 멀티 모달 모델 구축콘텐츠 중재를위한 멀티 모달 모델 구축Apr 12, 2025 am 10:51 AM

소개 공격적인 게시물이 나타날 때 좋아하는 소셜 미디어 플랫폼을 스크롤한다고 상상해보십시오. 보고서 버튼을 누르기 전에 사라졌습니다. 그게 내용 Moderati입니다

InsightMate를 사용하여 데이터 통찰력을 자동화하십시오InsightMate를 사용하여 데이터 통찰력을 자동화하십시오Apr 12, 2025 am 10:44 AM

소개 오늘날의 데이터가 많은 세상에서 거대한 데이터 세트를 처리하는 것은 매우 압도적 일 수 있습니다. 그곳에서 Insightmate가 들어오는 곳입니다. 데이터 탐색을 산들 바람으로 만들도록 설계되었습니다. 데이터 세트를 업로드하면 Instan이 나타납니다

벡터 스트리밍 : 녹이있는 메모리 효율적인 인덱싱벡터 스트리밍 : 녹이있는 메모리 효율적인 인덱싱Apr 12, 2025 am 10:42 AM

소개 대규모 문서 임베딩을 최적화하도록 설계된 기능인 Embedanything의 벡터 스트리밍이 소개됩니다. Rust 's Concurrency를 사용하여 비동기 청크 및 임베딩을 활성화하면 메모리 사용이 줄어들고

REPLIT 에이전트 란 무엇입니까? | 입문 안내서 -Anuceics VidhyaREPLIT 에이전트 란 무엇입니까? | 입문 안내서 -Anuceics VidhyaApr 12, 2025 am 10:40 AM

소개 대화와 똑같은 앱을 개발한다고 상상해보십시오. 설정할 복잡한 개발 환경이없고 구성 파일을 살펴볼 필요가 없습니다.

Lamini- 분석 Vidhya를 사용한 미세 조정 오픈 소스 LLMLamini- 분석 Vidhya를 사용한 미세 조정 오픈 소스 LLMApr 12, 2025 am 10:20 AM

최근에 대규모 언어 모델과 AI가 증가함에 따라 우리는 자연어 처리에서 수많은 발전을 보았습니다. 텍스트, 코드 및 이미지/비디오 생성과 같은 도메인의 모델은 인간과 같은 추론과 P를 보관했습니다.

See all articles

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

AI Hentai Generator

AI Hentai Generator

AI Hentai를 무료로 생성하십시오.

인기 기사

R.E.P.O. 에너지 결정과 그들이하는 일 (노란색 크리스탈)
3 몇 주 전By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. 최고의 그래픽 설정
3 몇 주 전By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. 아무도들을 수없는 경우 오디오를 수정하는 방법
3 몇 주 전By尊渡假赌尊渡假赌尊渡假赌
WWE 2K25 : Myrise에서 모든 것을 잠금 해제하는 방법
3 몇 주 전By尊渡假赌尊渡假赌尊渡假赌

뜨거운 도구

SublimeText3 Linux 새 버전

SublimeText3 Linux 새 버전

SublimeText3 Linux 최신 버전

DVWA

DVWA

DVWA(Damn Vulnerable Web App)는 매우 취약한 PHP/MySQL 웹 애플리케이션입니다. 주요 목표는 보안 전문가가 법적 환경에서 자신의 기술과 도구를 테스트하고, 웹 개발자가 웹 응용 프로그램 보안 프로세스를 더 잘 이해할 수 있도록 돕고, 교사/학생이 교실 환경 웹 응용 프로그램에서 가르치고 배울 수 있도록 돕는 것입니다. 보안. DVWA의 목표는 다양한 난이도의 간단하고 간단한 인터페이스를 통해 가장 일반적인 웹 취약점 중 일부를 연습하는 것입니다. 이 소프트웨어는

ZendStudio 13.5.1 맥

ZendStudio 13.5.1 맥

강력한 PHP 통합 개발 환경

SecList

SecList

SecLists는 최고의 보안 테스터의 동반자입니다. 보안 평가 시 자주 사용되는 다양한 유형의 목록을 한 곳에 모아 놓은 것입니다. SecLists는 보안 테스터에게 필요할 수 있는 모든 목록을 편리하게 제공하여 보안 테스트를 더욱 효율적이고 생산적으로 만드는 데 도움이 됩니다. 목록 유형에는 사용자 이름, 비밀번호, URL, 퍼징 페이로드, 민감한 데이터 패턴, 웹 셸 등이 포함됩니다. 테스터는 이 저장소를 새로운 테스트 시스템으로 간단히 가져올 수 있으며 필요한 모든 유형의 목록에 액세스할 수 있습니다.

SublimeText3 중국어 버전

SublimeText3 중국어 버전

중국어 버전, 사용하기 매우 쉽습니다.