>Java >java지도 시간 >Java API를 사용하여 HDFS를 작동하는 방법은 무엇입니까?

Java API를 사용하여 HDFS를 작동하는 방법은 무엇입니까?

王林
王林앞으로
2023-04-19 14:28:131337검색

1. 현재 디렉터리의 모든 파일과 폴더를 탐색합니다.

listStatus 메서드를 사용하면 위의 요구 사항을 충족할 수 있습니다.
listStatus 메소드의 시그니처는 다음과 같습니다

  /**
   * List the statuses of the files/directories in the given path if the path is
   * a directory.
   * 
   * @param f given path
   * @return the statuses of the files/directories in the given patch
   * @throws FileNotFoundException when the path does not exist;
   *         IOException see specific implementation
   */
  public abstract FileStatus[] listStatus(Path f) throws FileNotFoundException, 
                                                         IOException;

listStatus는 Path 매개변수만 전달하면 FileStatus 배열이 반환되는 것을 알 수 있습니다.
FileStatus에는 다음 정보가 포함되어 있습니다

/** Interface that represents the client side information for a file.
 */
@InterfaceAudience.Public
@InterfaceStability.Stable
public class FileStatus implements Writable, Comparable {

  private Path path;
  private long length;
  private boolean isdir;
  private short block_replication;
  private long blocksize;
  private long modification_time;
  private long access_time;
  private FsPermission permission;
  private String owner;
  private String group;
  private Path symlink;
  ....

FileStatus에서 파일 경로, 크기, 디렉터리 여부, block_replication, 블록 크기... 및 기타 정보를 보는 것은 어렵지 않습니다.

import org.apache.hadoop.fs.{FileStatus, FileSystem, Path}
import org.apache.spark.sql.SparkSession
import org.apache.spark.{SparkConf, SparkContext}
import org.slf4j.LoggerFactory

object HdfsOperation {
	
	val logger = LoggerFactory.getLogger(this.getClass)
	
	def tree(sc: SparkContext, path: String) : Unit = {
		val fs = FileSystem.get(sc.hadoopConfiguration)
		val fsPath = new Path(path)
		val status = fs.listStatus(fsPath)
		for(filestatus:FileStatus <- status) {
			logger.error("getPermission is: {}", filestatus.getPermission)
			logger.error("getOwner is: {}", filestatus.getOwner)
			logger.error("getGroup is: {}", filestatus.getGroup)
			logger.error("getLen is: {}", filestatus.getLen)
			logger.error("getModificationTime is: {}", filestatus.getModificationTime)
			logger.error("getReplication is: {}", filestatus.getReplication)
			logger.error("getBlockSize is: {}", filestatus.getBlockSize)
			if (filestatus.isDirectory) {
				val dirpath = filestatus.getPath.toString
				logger.error("文件夹名字为: {}", dirpath)
				tree(sc, dirpath)
			} else {
				val fullname = filestatus.getPath.toString
				val filename = filestatus.getPath.getName
				logger.error("全部文件名为: {}", fullname)
				logger.error("文件名为: {}", filename)
			}
		}
	}
}

fileStatus가 폴더인 것으로 확인되면 모든 항목을 순회하는 목적을 달성하기 위해 tree 메서드가 재귀적으로 호출됩니다.

2. 모든 파일 탐색

위 방법은 모든 파일과 폴더를 탐색하는 것입니다. 파일을 반복하고 싶다면 listFiles 메소드를 사용할 수 있습니다.

	def findFiles(sc: SparkContext, path: String) = {
		val fs = FileSystem.get(sc.hadoopConfiguration)
		val fsPath = new Path(path)
		val files = fs.listFiles(fsPath, true)
		while(files.hasNext) {
			val filestatus = files.next()
			val fullname = filestatus.getPath.toString
			val filename = filestatus.getPath.getName
			logger.error("全部文件名为: {}", fullname)
			logger.error("文件名为: {}", filename)
			logger.error("文件大小为: {}", filestatus.getLen)
		}
	}
  /**
   * List the statuses and block locations of the files in the given path.
   * 
   * If the path is a directory, 
   *   if recursive is false, returns files in the directory;
   *   if recursive is true, return files in the subtree rooted at the path.
   * If the path is a file, return the file&#39;s status and block locations.
   * 
   * @param f is the path
   * @param recursive if the subdirectories need to be traversed recursively
   *
   * @return an iterator that traverses statuses of the files
   *
   * @throws FileNotFoundException when the path does not exist;
   *         IOException see specific implementation
   */
  public RemoteIterator<LocatedFileStatus> listFiles(
      final Path f, final boolean recursive)
  throws FileNotFoundException, IOException {
  ...

소스 코드에서 볼 수 있듯이 listFiles는 반복 가능한 객체RemoteIteratorc9e85c60fcfb1f1d8c4d5e1d7b95ff0b를 반환하고 listStatus는 배열을 반환합니다. 동시에 listFiles는 모든 파일을 반환합니다.

3.폴더 생성

	def mkdirToHdfs(sc: SparkContext, path: String) = {
		val fs = FileSystem.get(sc.hadoopConfiguration)
		val result = fs.mkdirs(new Path(path))
		if (result) {
			logger.error("mkdirs already success!")
		} else {
			logger.error("mkdirs had failed!")
		}
	}

4.폴더 삭제

	def deleteOnHdfs(sc: SparkContext, path: String) = {
		val fs = FileSystem.get(sc.hadoopConfiguration)
		val result = fs.delete(new Path(path), true)
		if (result) {
			logger.error("delete already success!")
		} else {
			logger.error("delete had failed!")
		}
	}

5.파일 업로드

	def uploadToHdfs(sc: SparkContext, localPath: String, hdfsPath: String): Unit = {
		val fs = FileSystem.get(sc.hadoopConfiguration)
		fs.copyFromLocalFile(new Path(localPath), new Path(hdfsPath))
		fs.close()
	}

6.파일 다운로드

	def downloadFromHdfs(sc: SparkContext, localPath: String, hdfsPath: String) = {
		val fs = FileSystem.get(sc.hadoopConfiguration)
		fs.copyToLocalFile(new Path(hdfsPath), new Path(localPath))
		fs.close()
	}

위 내용은 Java API를 사용하여 HDFS를 작동하는 방법은 무엇입니까?의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

성명:
이 기사는 yisu.com에서 복제됩니다. 침해가 있는 경우 admin@php.cn으로 문의하시기 바랍니다. 삭제