아시아의 많은 지역에서는 계절성 폭우로 인해 홍수가 발생하고 시민의 재산과 생계가 파괴됩니다. 과거에는 시 행정부, 시민, 기업이 할 수 있는 일이 홍수와 홍수로 인한 잠재적인 질병으로부터 보호하는 것 외에는 거의 할 수 없었습니다. 그리고 사물 인터넷(IoT), 머신 러닝(ML), 인공 지능(AI)과 같은 기술은 미래 지향적인 리더들에게 숨쉴 공간을 제공할 수 있습니다.
자카르타 스마트시티에 DKI 자카르타 주 정부 홍수 통제 시스템을 적용한 애플리케이션입니다. 이 프로젝트는 자카르타 스마트 시티가 자카르타 물 서비스국(DSDA)과 협력하여 개발했으며 자카르타의 홍수 위험 관리를 최적화하는 것을 목표로 합니다. 이 프로젝트에는 도시의 홍수 위험에 대처하기 위한 조기 경보 시스템의 일부로 IoT, 인공 지능 및 기계 학습을 사용하는 것이 포함됩니다.
더 많은 조직이 상업 및 산업 환경에 IoT를 배포함에 따라 이러한 장치 및 센서에서 나오는 데이터의 양은 품질, 운영 효율성을 향상하는 데 중요한 역할을 할 수 있으며 자카르타의 경우 자연 재해 및 재산으로부터 생명을 구하는 데 도움이 될 수 있습니다. 매우 중요합니다.
SAS Institute의 산업 컨설팅 이사인 Kenneth Koh는 IoT 시스템이 환경에 대응할 수 있는 속도와 정확성이 중요하다고 믿습니다. 그러나 일반적인 시스템의 장치 및 기타 센서는 대량의 데이터를 생성하기 때문에 기존 도구와 방법은 이 데이터를 이해하는 프로세스를 느리게 할 수 있습니다.
인공지능 임베디드 IoT란?
Kenneth Koh: 엣지 또는 엣지 근처에서 데이터를 처리하면 IoT 시스템을 더욱 유연하고 영향력 있게 만들 수 있습니다. 그러나 데이터 기반 조치의 품질은 그 기반이 되는 데이터 기반 통찰력의 품질만큼 의미가 있습니다.
사물 인터넷 자체는 제조업체에게 새로운 것이 아닙니다. 제조업체는 수십 년 동안 기계에서 센서 데이터를 수집하고 저장해 왔습니다. 그들의 가치 제안은 AIoT에 있습니다. 즉, 엣지에서 실시간으로 데이터를 분석하고 인공 지능과 기계 학습을 활용하여 효율성과 가치를 높입니다.
IoT 시스템에 인공지능 기능을 탑재하면 다양한 정형 및 비정형 데이터를 엣지에서 처리할 수 있습니다. 시스템이 조치를 취할 수 있도록 고품질 통찰력을 더 빠르게 제공하세요.
인공 지능 임베디드 IoT가 비즈니스 가치를 실현하는 방법
Kenneth Koh: 인공 지능 임베디드 IoT는 운영 효율성과 생산성을 향상시키는 동시에 비용을 절감합니다. 또한 더 나은 고객 서비스, 더 나은 제품, 더 빠른 출시 시간을 제공하기 위해 혁신을 주도합니다.
IoT 장치에 AI를 내장하면 엣지 컴퓨팅이 가능해 일관된 5G 네트워크를 사용할 수 없는 곳에 IoT 시스템을 배포할 수 있습니다. 예를 들어, 물류 제공업체는 운송 차량에 IoT 센서를 사용하여 후자 경로의 원격 지역에서도 차량의 내부 및 외부 상태를 모니터링할 수 있습니다.
에지 컴퓨팅 외에도 AI 내장 IoT는 기계 학습을 활용하여 IoT 시스템에서 매일 생성되는 테라바이트급 데이터에서 실행 가능한 통찰력을 개발합니다. 위의 예에서 이러한 센서에서 수집된 데이터는 실시간으로 클라우드로 전송되므로 기술자는 차량 문제를 보다 정확하고 빠르게 해결할 수 있습니다.
제조업체는 이러한 통찰력을 사용하여 특정 공장 시스템이나 장비의 고장 시기를 예측하여 기술자가 예방적 유지 관리를 구현할 수도 있습니다. 결함이 있는 장비를 사전에 감지하면 귀중한 작업 시간을 절약하는 동시에 비용이 많이 드는 계획되지 않은 가동 중지 시간을 줄일 수 있습니다.
소매업에서는 IoT 시스템의 통찰력을 사용하여 제품의 최적 가격을 결정하고 공급망 중단을 최소화할 수 있습니다.
IoT 분석에서 기계 학습의 역할
Kenneth Koh: 기계 학습은 다른 IoT 배포에 비해 인공 지능 내장 IoT의 장점입니다. 시스템은 의사결정 트리, 랜덤 포레스트, 그래디언트 부스팅, 신경망, 지원 벡터 머신, 인수분해 머신 등 다양한 고급 분석 방법을 사용하여 센서에서 생성된 데이터를 처리하면서 학습할 수 있습니다.
이를 통해 조직의 비즈니스 인력 시간과 전문가가 절약됩니다. AI 시스템을 광범위하게 교육할 필요 없이 전문가는 다른 중요한 작업에 집중할 수 있고, 데이터 과학자가 아닌 사람은 데이터에 액세스하고, 보고, 처리할 수 있습니다.
기계 학습 기능은 또한 AI 시스템이 온라인과 오프라인 모두에서 시각적 이미지, 텍스트, 음성 음성까지 액세스하고 처리할 수 있는 데이터의 범위를 늘립니다. 기존 데이터의 양과 질이 향상되면 이를 통해 얻은 통찰력의 가치와 영향력도 커집니다.
이러한 기계 학습 기능을 결합하면 데이터 처리 속도와 양이 증가하여 실시간으로 실행 가능한 통찰력을 얻을 수 있습니다. 이는 많은 IoT 시스템에서 매우 중요합니다.
AIoT가 자카르타 스마트 시티를 지원하는 방법: 자카르타 스마트 시티는 SAS의 인공 지능 플랫폼을 활용하여 멀티 소스 데이터를 실시간으로 통합하고 IoT, 머신 러닝, 인공 지능 기술을 통해 고급 분석을 제공하여 긴급/재난 예측 기능과 최적화를 제공합니다. 서비스 공개. 그 결과 자카르타의 홍수 위험을 줄이는 홍수 비상 대응이 이루어졌습니다.
IoT가 역사적으로 운영 기술이었다면 누가 IoT 보안을 소유해야 할까요?
Kenneth Koh: IoT의 도입으로 기업 IT와 OT 간의 경계가 모호해졌습니다. 센서와 장치가 네트워크에 연결되어 새로운 시스템을 만들고 프로세스를 개선합니다. 동시에 이러한 융합은 기존 OT 장비와 시스템을 이전에 직면한 적이 없는 위협에 노출시킵니다.
실제로 진정한 장치 보안은 기술, 프로세스 및 모범 사례의 조합입니다. 따라서 IoT 시스템 보안은 OT나 IT 팀만의 전유물이 되어서는 안 되며, 둘 사이의 더욱 긴밀하고 효과적인 협업이 이루어져야 합니다.
그러나 IT 보안 팀과 OT 보안 팀은 종종 동일한 언어를 사용하지 않고 서로의 관점을 이해하는 데 어려움을 겪기 때문에 이는 말처럼 쉽지 않습니다.
책임 분배가 완전히 다릅니다. 우선순위가 서로 다른 경우가 많으며, OT 보안과 IT 보안을 관리하는 규정이 충돌하는 경우도 있습니다. 특정 환경의 모든 자산에 대한 개요를 얻으면 어떤 상황에서도 어떤 자산과 프로세스가 실패할 수 없는지 명확하게 알 수 있습니다.
이를 통해 조직은 통합 사이버 보안을 구축하고 실행하여 데이터 기밀성, 무결성 및 가용성을 보장할 수 있습니다.
IT 및 운영 기술자가 함께 작업할 수 있는 모범 사례를 인용하세요
Kenneth Koh: 제조 분야에서 데이터는 시간에 매우 민감합니다. 예를 들어 공정의 화학물질 농도가 최적 농도에서 벗어나는 경우 엔지니어는 몇 분만에 반응하여 수많은 제품을 절약할 수 있습니다.
많은 반도체 공정에서 엔지니어는 단 몇 초만에 반응할 수 있습니다. 이 경우 분석은 "에지"로 이동해야 합니다. 즉, 백오피스나 엔지니어링 부서가 아닌 기계나 작업 현장에서 데이터를 분석하고 의사결정을 내려야 합니다.
이를 위해서는 기계, 생산 현장, 클라우드 또는 백오피스 등 필요할 때마다 분석을 수행할 수 있는 능력이 필요합니다.
주요 과제 중 하나는 데이터 사일로입니다. IT/OT 융합을 구현하지 않은 조직의 경우 통합되지 않거나 부분적으로 통합된 애플리케이션과 엔터프라이즈 시스템의 패치워크가 있습니다. 신중한 계획 없이 IoT 센서와 같은 새로운 데이터 소스를 도입하면 문제가 더욱 복잡해질 수 있습니다.
IoT 시스템을 조직의 기존 기술 스택과 연결하는 데이터 통합 플랫폼을 구현하면 과거 데이터와 미래 데이터 사이의 사일로를 허물고 단일 제어 지점을 통해 모든 팀에 동일한 액세스 권한을 제공할 수 있습니다. 이를 통해 IT 팀과 OT 팀이 동일한 페이지에 있게 되어 더 나은 IT/OT 통합을 위한 기반을 마련할 수 있습니다.
위 내용은 IoT 분석에서 인공지능의 가치의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

AI의 빠른 통합으로 악화 된 직장의 급성장 용량 위기는 점진적인 조정을 넘어 전략적 변화를 요구합니다. 이것은 WTI의 발견에 의해 강조됩니다. 직원의 68%가 작업량으로 어려움을 겪고 BUR로 이어

John Searle의 중국 방 주장 : AI 이해에 대한 도전 Searle의 사고 실험은 인공 지능이 진정으로 언어를 이해할 수 있는지 또는 진정한 의식을 가질 수 있는지 직접 의문을 제기합니다. Chines를 무시하는 사람을 상상해보십시오

중국의 기술 거대 기업은 서부에 비해 AI 개발 과정에서 다른 과정을 차트하고 있습니다. 기술 벤치 마크 및 API 통합에만 초점을 맞추는 대신 "스크린 인식"AI 비서 우선 순위를 정합니다.

MCP : AI 시스템이 외부 도구에 액세스 할 수 있도록 권한을 부여합니다 MCP (Model Context Protocol)를 사용하면 AI 애플리케이션이 표준화 된 인터페이스를 통해 외부 도구 및 데이터 소스와 상호 작용할 수 있습니다. MCP를 통해 MCP는 인류에 의해 개발되고 주요 AI 제공 업체가 지원하는 언어 모델 및 에이전트가 사용 가능한 도구를 발견하고 적절한 매개 변수로 전화 할 수 있습니다. 그러나 환경 충돌, 보안 취약점 및 일관되지 않은 교차 플랫폼 동작을 포함하여 MCP 서버 구현에는 몇 가지 과제가 있습니다. Forbes 기사 "Anthropic의 모델 컨텍스트 프로토콜은 AI 에이전트 개발의 큰 단계입니다."저자 : Janakiram MSVDocker는 컨테이너화를 통해 이러한 문제를 해결합니다. Docker Hub Infrastructure를 구축했습니다

최첨단 기술을 활용하고 비즈니스 통제력을 발휘하여 통제력을 유지하면서 수익성이 높고 확장 가능한 회사를 창출하는 비전 기업가가 사용하는 6 가지 전략. 이 안내서는

Google 사진의 새로운 Ultra HDR 도구 : 이미지 향상을위한 게임 체인저 Google Photos는 강력한 Ultra HDR 변환 도구를 도입하여 표준 사진을 활기차고 높은 동기 범위 이미지로 변환했습니다. 이 향상은 사진가 a

기술 아키텍처는 새로운 인증 문제를 해결합니다 에이전트 Identity Hub는 문제를 해결합니다. 많은 조직이 AI 에이전트 구현을 시작한 후에 만 기존 인증 방법이 기계 용으로 설계되지 않았다는 것을 발견 한 후에 만 발견합니다.

(참고 : Google은 회사 인 Moor Insights & Strategy의 자문 고객입니다.) AI : 실험에서 Enterprise Foundation까지 Google Cloud Next 2025는 실험 기능에서 엔터프라이즈 기술의 핵심 구성 요소까지 AI의 진화를 보여주었습니다.


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

ZendStudio 13.5.1 맥
강력한 PHP 통합 개발 환경

Dreamweaver Mac版
시각적 웹 개발 도구

VSCode Windows 64비트 다운로드
Microsoft에서 출시한 강력한 무료 IDE 편집기

Atom Editor Mac 버전 다운로드
가장 인기 있는 오픈 소스 편집기

SecList
SecLists는 최고의 보안 테스터의 동반자입니다. 보안 평가 시 자주 사용되는 다양한 유형의 목록을 한 곳에 모아 놓은 것입니다. SecLists는 보안 테스터에게 필요할 수 있는 모든 목록을 편리하게 제공하여 보안 테스트를 더욱 효율적이고 생산적으로 만드는 데 도움이 됩니다. 목록 유형에는 사용자 이름, 비밀번호, URL, 퍼징 페이로드, 민감한 데이터 패턴, 웹 셸 등이 포함됩니다. 테스터는 이 저장소를 새로운 테스트 시스템으로 간단히 가져올 수 있으며 필요한 모든 유형의 목록에 액세스할 수 있습니다.
