찾다
백엔드 개발파이썬 튜토리얼Python 데이터 시각화를 위한 3단계

1. 먼저 그림을 그릴 때 어떤 라이브러리를 사용하는지 알아야 겠죠?

matplotlib

Python에서 가장 기본적인 그리기 라이브러리는 Python의 가장 기본적인 시각화 라이브러리인 matplotlib입니다. matplotlib에서 시각화한 다음 수직 및 수평 확장을 시작합니다.

Seaborn

은 matplotlib을 기반으로 하는 고급 시각화 효과 라이브러리입니다. Seaborn은 주로 데이터 마이닝 및 기계 학습에서 변수 기능 선택을 대상으로 하며 더 많은 차원의 데이터를 설명하는 시각화 효과 다이어그램을 그릴 수 있습니다.

기타 라이브러리에는

Bokeh(분석가가 데이터와 상호 작용할 수 있도록 브라우저 측 대화형 시각화에 사용되는 라이브러리), Mapbox(강력한 지리 데이터 엔진을 갖춘 시각화 도구 라이브러리) 등이 있습니다.

이 기사에서는 사례 분석을 위해 matplotlib를 주로 사용합니다

1단계: 문제 파악 및 그래픽 선택

업무가 복잡할 수 있지만 분할 후에는 구체적인 문제가 무엇인지 그래픽을 통해 표현하고 싶은지 찾아야 합니다. 분석적 사고 훈련을 위해 "맥킨지 방법"과 "피라미드 원리"의 방법을 배울 수 있습니다.

차트 종류 선택에 관한 인터넷상의 요약입니다.

Python 데이터 시각화를 위한 3단계

Python에서는 그래픽을 표시하기 위해 다음과 같은 네 가지 기본 시각적 요소로 요약할 수 있습니다.

  • 점: 산점도 2차원 데이터, 간단한 2차원 관계에 적합함
  • 선: 선 플롯 2 -시계열에 적합한 차원 데이터
  • 항목 통계에 적합한 막대 그래프 2차원 데이터
  • 색상: 3차원 표시에 적합한 히트맵

분포, 구성, 비교, 연결이 있습니다. 데이터 등 관계 간의 추세 변화. 다양한 관계에 따라 표시할 해당 그래픽을 선택합니다.

2단계: 데이터 변환, 함수 적용

데이터 분석 및 모델링의 많은 프로그래밍 작업은 로드, 정리, 변환 및 재구성과 같은 데이터 준비를 기반으로 합니다. 시각화 단계에서도 데이터를 구성하고 필요한 형식으로 변환한 다음 시각화 방법을 적용하여 도면을 완성해야 합니다.

다음은 일반적으로 사용되는 데이터 변환 방법입니다.

  • Merge: merge, concat, Combine_frist(데이터베이스의 완전 외부 조인과 유사)
  • Reshape: 축 회전: 피벗(Excel 피벗 테이블과 유사) )
  • Deduplication: drop_duplicates
  • Mapping: map
  • Fill replacement: fillna,replace
  • 축 인덱스 이름 바꾸기: rename

범주형 변수를 '가짜 변수 행렬'의 get_dummies 함수와 다음의 특정 데이터 열로 변환합니다. df 한계값 등을 취합니다.

함수는 첫 번째 단계에서 선택한 그래픽을 기반으로 Python에서 해당 함수를 찾습니다.

3단계: 매개변수 설정, 한눈에 정리

원본 그래프가 그려진 후 색상(color), 선 스타일(linestyle), 마크(maker) 또는 기타 차트 장식 항목 제목(Title)을 수정할 수 있으며, 필요에 따른 축 라벨(xlabel, ylabel), 축 스케일(set_xticks), 범례(legend) 등을 통해 그래픽을 더욱 직관적으로 만들어줍니다.

세 번째 단계는 그래픽을 더욱 명확하고 명확하게 만들기 위해 두 번째 단계를 기반으로 합니다. 특정 매개변수는 차트 기능에서 찾을 수 있습니다.

2. 시각적 그리기 기본

Matplotlib 그리기 기본

#导入包
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

Figure 및 Subplot

matplotlib 그래픽은 모두 Figure(캔버스)에 있으며 Subplot은 이미지 공간을 만듭니다. 그림을 통해 그릴 수 없습니다. 하나 이상의 하위 플롯을 생성하려면 add_subplot을 사용해야 합니다.

figsize는 이미지 크기를 지정할 수 있습니다.

#创建画布
fig = plt.figure()
<Figure size 432x288 with 0 Axes>
#创建subplot,221表示这是2行2列表格中的第1个图像。
ax1 = fig.add_subplot(221)
#但现在更习惯使用以下方法创建画布和图像,2,2表示这是一个2*2的画布,可以放置4个图像
fig , axes = plt.subplots(2,2,sharex=True,sharey=True)
#plt.subplot的sharex和sharey参数可以指定所有的subplot使用相同的x,y轴刻度。

Python 데이터 시각화를 위한 3단계

Figure의 subplots_adjust 메서드를 사용하여 간격을 조정합니다.

subplots_adjust(left=None,bottom=None,right=None,
top=None,wspace=None,hspace=None)

Python 데이터 시각화를 위한 3단계

색상, 마커 및 선 스타일

matplotlib의 플롯 함수는 X 및 Y 좌표 세트를 허용하며 색상 및 선 스타일을 나타내는 문자열 약어: **'g-- '도 허용할 수 있습니다. 녹색이고 선 유형은 '--' 점선입니다. **매개변수를 사용하여 명시적으로 지정할 수도 있습니다.

선 차트에는 데이터 포인트의 위치를 ​​강조하기 위해 일부 마커를 추가할 수도 있습니다. 태그는 형식 문자열에 배치할 수도 있지만 태그 유형과 선 스타일은 색상 뒤에 와야 합니다.

plt.plot(np.random.randn(30),color='g',
 linestyle='--',marker='o')
[<matplotlib.lines.Line2D at 0x8c919b0>]

Scales, labels and legends

plt의 xlim, xticks 및 xtickslabels 메소드는 각각 차트의 범위와 눈금 위치 및 눈금 레이블을 제어합니다.

매개변수 없이 메소드를 호출하면 현재 매개변수 값이 반환되고, 매개변수와 함께 메소드를 호출하면 매개변수 값이 설정됩니다.

plt.plot(np.random.randn(30),color='g',
 linestyle='--',marker='o')
plt.xlim() #不带参数调用,显示当前参数;
#可将xlim替换为另外两个方法试试
(-1.4500000000000002, 30.45)

Python 데이터 시각화를 위한 3단계

img

plt.plot(np.random.randn(30),color='g',
 linestyle='--',marker='o')
plt.xlim([0,15]) #横轴刻度变成0-15
(0, 15)

Python 데이터 시각화를 위한 3단계

设置标题,轴标签,刻度以及刻度标签

fig = plt.figure();ax = fig.add_subplot(1,1,1)
ax.plot(np.random.randn(1000).cumsum())
ticks = ax.set_xticks([0,250,500,750,1000]) #设置刻度值
labels = ax.set_xticklabels(['one','two','three','four','five']) #设置刻度标签
ax.set_title('My first Plot') #设置标题
ax.set_xlabel('Stage') #设置轴标签
Text(0.5,0,'Stage')

Python 데이터 시각화를 위한 3단계

添加图例

图例legend是另一种用于标识图标元素的重要工具。 可以在添加subplot的时候传入label参数。

fig = plt.figure(figsize=(12,5));ax = fig.add_subplot(111)
ax.plot(np.random.randn(1000).cumsum(),'k',label='one') #传入label参数,定义label名称
ax.plot(np.random.randn(1000).cumsum(),'k--',label='two')
ax.plot(np.random.randn(1000).cumsum(),'k.',label='three')
#图形创建完后,只需要调用legend参数将label调出来即可。
ax.legend(loc='best') 
#要求不是很严格的话,建议使用loc=‘best’参数来让它自己选择最佳位置

Python 데이터 시각화를 위한 3단계

注解

除标准的图表对象之外,我们还可以自定义添加一些文字注解或者箭头。

注解可以通过text,arrow和annotate等函数进行添加。text函数可以将文本绘制在指定的x,y坐标位置,还可以进行自定义格式

plt.plot(np.random.randn(1000).cumsum())
plt.text(600,10,'test ',family='monospace',fontsize=10)
#中文注释在默认环境下并不能正常显示,需要修改配置文件,
# 使其支持中文字体。具体步骤请自行搜索。

保存图表到文件

利用plt.savefig可以将当前图表保存到文件。例如,要将图表保存为png文件,可以执行

文件类型是根据拓展名而定的。其他参数还有:

  • fname:含有文件路径的字符串,拓展名指定文件类型
  • dpi:分辨率,默认100 facecolor,edgcolor 图像的背景色,默认‘w’白色
  • format:显示设置文件格式('png','pdf','svg','ps','jpg'等)
  • bbox_inches:图表需要保留的部分。如果设置为“tight”,则将尝试剪除图像周围的空白部分
plt.savefig('./plot.jpg') #保存图像为plot名称的jpg格式图像
<Figure size 432x288 with 0 Axes>

3、Pandas中的绘图函数

Matplotlib作图

matplotlib是最基础的绘图函数,也是相对较低级的工具。 组装一张图表需要单独调用各个基础组件才行。Pandas中有许多基于matplotlib的高级绘图方法,原本需要多行代码才能搞定的图表,使用pandas只需要短短几行。

我们使用的就调用了pandas中的绘图包。

import matplotlib.pyplot as plt

线型图

Series和DataFrame都有一个用于生成各类图表的plot方法。 默认情况下,他们生成的是线型图。

s = pd.Series(np.random.randn(10).cumsum(),index=np.arange(0,100,10))
s.plot() #Series对象的索引index会传给matplotlib用作绘制x轴。
<matplotlib.axes._subplots.AxesSubplot at 0xf553128>

Python 데이터 시각화를 위한 3단계

df = pd.DataFrame(np.random.randn(10,4).cumsum(0),
columns=['A','B','C','D'])
df.plot() #plot会自动为不同变量改变颜色,并添加图例
<matplotlib.axes._subplots.AxesSubplot at 0xf4f9eb8>

Python 데이터 시각화를 위한 3단계

Series.plot方法的参数

  • label:用于图表的标签
  • style:风格字符串,'g--'
  • alpha:图像的填充不透明度(0-1)
  • kind:图表类型(bar,line,hist,kde等)
  • xticks:设定x轴刻度值
  • yticks:设定y轴刻度值
  • xlim,ylim:设定轴界限,[0,10]
  • grid:显示轴网格线,默认关闭
  • rot:旋转刻度标签
  • use_index:将对象的索引用作刻度标签
  • logy:在Y轴上使用对数标尺

DataFrame.plot方法的参数

DataFrame除了Series中的参数外,还有一些独有的选项。

  • subplots:将各个DataFrame列绘制到单独的subplot中
  • sharex,sharey:共享x,y轴
  • figsize:控制图像大小
  • title:图像标题
  • legend:添加图例,默认显示
  • sort_columns:以字母顺序绘制各列,默认使用当前顺序

柱状图

在生成线型图的代码中加上kind=‘bar’或者kind=‘barh’,可以生成柱状图或水平柱状图。

fig,axes = plt.subplots(2,1)
data = pd.Series(np.random.rand(10),index=list('abcdefghij'))
data.plot(kind='bar',ax=axes[0],rot=0,alpha=0.3)
data.plot(kind='barh',ax=axes[1],grid=True)
<matplotlib.axes._subplots.AxesSubplot at 0xfe39898>

Python 데이터 시각화를 위한 3단계

柱状图有一个非常实用的方法:

利用value_counts图形化显示Series或者DF中各值的出现频率。

比如df.value_counts().plot(kind='bar')

Python可视化的基础语法就到这里,其他图形的绘制方法大同小异。

重点是遵循三个步骤的思路来进行思考、选择、应用。多多练习可以更加熟练。


위 내용은 Python 데이터 시각화를 위한 3단계의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

성명
이 기사는 51CTO.COM에서 복제됩니다. 침해가 있는 경우 admin@php.cn으로 문의하시기 바랍니다. 삭제
Python Switch 문은 무엇입니까?Python Switch 문은 무엇입니까?Apr 30, 2025 pm 02:08 PM

이 기사는 버전 3.10에 도입 된 Python의 새로운 "매치"진술에 대해 논의하며, 이는 다른 언어로 된 문장과 동등한 역할을합니다. 코드 가독성을 향상시키고 기존 IF-ELIF-EL보다 성능 이점을 제공합니다.

파이썬의 예외 그룹은 무엇입니까?파이썬의 예외 그룹은 무엇입니까?Apr 30, 2025 pm 02:07 PM

Python 3.11의 예외 그룹은 여러 예외를 동시에 처리하여 동시 시나리오 및 복잡한 작업에서 오류 관리를 향상시킵니다.

파이썬의 기능 주석이란 무엇입니까?파이썬의 기능 주석이란 무엇입니까?Apr 30, 2025 pm 02:06 PM

Python의 기능 주석은 유형 확인, 문서 및 IDE 지원에 대한 기능에 메타 데이터를 추가합니다. 코드 가독성, 유지 보수를 향상 시키며 API 개발, 데이터 과학 및 라이브러리 생성에 중요합니다.

파이썬의 단위 테스트는 무엇입니까?파이썬의 단위 테스트는 무엇입니까?Apr 30, 2025 pm 02:05 PM

이 기사는 파이썬의 단위 테스트, 이점 및 효과적으로 작성하는 방법에 대해 설명합니다. 테스트를 위해 UnitTest 및 Pytest와 같은 도구를 강조 표시합니다.

Python의 액세스 지정자는 무엇입니까?Python의 액세스 지정자는 무엇입니까?Apr 30, 2025 pm 02:03 PM

기사는 Python의 액세스 지정자에 대해 논의합니다. Python은 명명 규칙을 사용하여 엄격한 시행보다는 클래스 멤버의 가시성을 나타냅니다.

파이썬의 __init __ () 란 무엇이며 자기 자신은 어떻게 역할을합니까?파이썬의 __init __ () 란 무엇이며 자기 자신은 어떻게 역할을합니까?Apr 30, 2025 pm 02:02 PM

기사는 Python의 \ _ \ _ init \ _ \ _ () 메소드와 객체 속성 초기화에서 자기의 역할에 대해 설명합니다. \ _ \ _ init \ _ \ _ ()에 대한 다른 클래스 방법 및 상속의 영향도 포함됩니다.

Python의 @ClassMethod, @StaticMethod 및 인스턴스 메소드의 차이점은 무엇입니까?Python의 @ClassMethod, @StaticMethod 및 인스턴스 메소드의 차이점은 무엇입니까?Apr 30, 2025 pm 02:01 PM

이 기사는 @classmethod, @staticMethod 및 Python의 인스턴스 방법의 차이점에 대해 설명하며 속성, 사용 사례 및 이점을 자세히 설명합니다. 필요한 기능과 DA를 기반으로 올바른 메소드 유형을 선택하는 방법을 설명합니다.

요소를 파이썬 어레이에 어떻게 추가합니까?요소를 파이썬 어레이에 어떻게 추가합니까?Apr 30, 2025 am 12:19 AM

inpython, youappendElementStoalistUsingTheAppend () 메소드 1) useappend () forsinglelements : my_list.append (4) .2) useextend () 또는 = formultiplementements : my_list.extend (other_list) 또는 my_list = [4,5,6] .3) useinsert () forspecificpositions : my_list.insert (1,5) .Bearware

See all articles

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

Video Face Swap

Video Face Swap

완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

뜨거운 도구

맨티스BT

맨티스BT

Mantis는 제품 결함 추적을 돕기 위해 설계된 배포하기 쉬운 웹 기반 결함 추적 도구입니다. PHP, MySQL 및 웹 서버가 필요합니다. 데모 및 호스팅 서비스를 확인해 보세요.

에디트플러스 중국어 크랙 버전

에디트플러스 중국어 크랙 버전

작은 크기, 구문 강조, 코드 프롬프트 기능을 지원하지 않음

SublimeText3 영어 버전

SublimeText3 영어 버전

권장 사항: Win 버전, 코드 프롬프트 지원!

SublimeText3 Linux 새 버전

SublimeText3 Linux 새 버전

SublimeText3 Linux 최신 버전

메모장++7.3.1

메모장++7.3.1

사용하기 쉬운 무료 코드 편집기