찾다
기술 주변기기일체 포함작은 데이터 세트를 사용하여 딥 러닝 모델을 개선하는 방법은 무엇입니까?

번역가 | Bugatti

리뷰어 | Sun Shujuan

우리 모두 알고 있듯이 딥 러닝 모델에는 데이터 수요가 많습니다. 딥 러닝 모델에 더 많은 데이터를 제공할수록 성능이 향상됩니다. 불행하게도 대부분의 실제 상황에서는 이것이 불가능합니다. 데이터가 충분하지 않을 수도 있고, 데이터를 수집하기에는 비용이 너무 많이 들 수도 있습니다.

작은 데이터 세트를 사용하여 딥 러닝 모델을 개선하는 방법은 무엇입니까?

이 기사에서는 더 많은 데이터를 사용하지 않고 딥 러닝 모델을 개선하는 네 가지 방법을 논의합니다.

딥러닝에는 왜 그렇게 많은 데이터가 필요한가요?

딥 러닝 모델은 복잡한 관계를 이해하는 방법을 배울 수 있다는 점에서 매력적입니다. 딥 러닝 모델에는 여러 계층이 포함되어 있습니다. 각 계층은 점점 더 복잡해지는 데이터 표현을 이해하는 방법을 배웁니다. 첫 번째 레이어는 가장자리와 같은 간단한 패턴을 감지하는 방법을 학습할 수 있습니다. 두 번째 레이어는 모양과 같은 가장자리의 패턴을 보는 방법을 학습할 수 있습니다. 세 번째 레이어는 이러한 모양 등으로 구성된 개체를 인식하는 방법을 학습할 수 있습니다.

각 레이어는 일련의 뉴런으로 구성되며, 이는 차례로 이전 레이어의 각 뉴런에 연결됩니다. 이러한 모든 레이어와 뉴런은 최적화할 매개변수가 많다는 것을 의미합니다. 따라서 좋은 점은 딥 러닝 모델이 강력한 기능을 가지고 있다는 것입니다. 그러나 단점은 과적합이 발생하기 쉽다는 것을 의미합니다. 과적합은 모델이 훈련 데이터에서 너무 많은 간섭 신호를 포착하여 새 데이터에 적용할 수 없음을 의미합니다.

충분한 데이터가 있으면 딥 러닝 모델은 매우 복잡한 관계를 감지하는 방법을 학습할 수 있습니다. 그러나 데이터가 충분하지 않으면 딥 러닝 모델이 이러한 복잡한 관계를 이해할 수 없습니다. 딥러닝 모델이 학습할 수 있으려면 충분한 데이터가 있어야 합니다.

하지만 더 많은 데이터를 수집하는 것이 불가능하다면 이를 극복할 수 있는 몇 가지 기술이 있습니다.

1. 전이 학습은 소규모 데이터 세트로 딥 러닝 모델을 훈련하는 데 도움이 됩니다.

전이 학습은 하나의 문제에 대해 훈련된 모델을 가져와 다양한 관련 문제를 해결하기 위한 출발점으로 사용할 수 있는 기계 학습 기술입니다.

예를 들어, 거대한 개 이미지 데이터 세트에 대해 훈련된 모델을 가져와 개 품종을 식별하는 모델을 훈련하기 위한 출발점으로 사용할 수 있습니다.

첫 번째 모델에서 학습한 기능을 재사용하여 시간과 리소스를 절약할 수 있기를 바랍니다. 두 응용 프로그램이 얼마나 다른지에 대한 경험 법칙은 없습니다. 그러나 원본 데이터 세트와 새 데이터 세트가 매우 다른 경우에도 전이 학습을 계속 사용할 수 있습니다.

예를 들어, 고양이 이미지에 대해 훈련된 모델을 가져와 낙타 유형을 인식하는 모델 훈련의 출발점으로 사용할 수 있습니다. 첫 번째 모델에서 네 다리의 기능을 알아내는 것이 낙타를 식별하는 데 도움이 되기를 바랍니다.

전이 학습에 대해 자세히 알아보려면 ​​"자연어 처리를 위한 전이 학습"​​​을 참조하세요. Python 프로그래머라면 ​​"Practical Transfer Learning with Python"​도 도움이 될 것입니다.

2. 데이터 증대를 시도해 보세요

데이터 증대는 기존 데이터를 가져와서 새로운 합성 데이터를 생성할 수 있는 기술입니다.

예를 들어 개 이미지 데이터세트가 있는 경우 데이터 증대를 사용하여 새로운 개 사진을 생성할 수 있습니다. 이미지를 무작위로 자르고, 수평으로 뒤집고, 노이즈를 추가하는 등 여러 가지 기술을 사용하여 이를 수행할 수 있습니다.

작은 데이터 세트가 있는 경우 데이터 확대가 큰 이점이 될 수 있습니다. 새로운 데이터를 생성하면 데이터 세트의 크기를 인위적으로 늘려 딥 러닝 모델에 더 많은 데이터를 사용할 수 있습니다.

딥 러닝에 관한 이​​유인물​​은 데이터 증강에 대해 더 깊이 이해하는 데 도움이 될 것입니다.

3. 자동 인코더 사용

자동 인코더는 저차원 데이터 표현을 학습하는 데 사용되는 딥 러닝 모델입니다.

오토인코더는 데이터를 저차원 공간으로 압축하는 방법을 학습할 수 있으므로 작은 데이터 세트가 있을 때 유용합니다.

오토인코더에는 다양한 유형이 있습니다. VAE(변형 자동 인코더)는 널리 사용되는 자동 인코더 유형입니다. VAE는 생성 모델이므로 새로운 데이터를 생성할 수 있습니다. VAE를 사용하여 훈련 데이터와 유사한 새로운 데이터 포인트를 생성할 수 있기 때문에 이는 많은 도움이 됩니다. 이는 실제로 더 많은 데이터를 수집하지 않고도 데이터세트의 크기를 늘릴 수 있는 좋은 방법입니다.

원제: 소규모 데이터 세트로 딥 러닝 모델을 개선하는 방법

위 내용은 작은 데이터 세트를 사용하여 딥 러닝 모델을 개선하는 방법은 무엇입니까?의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

성명
이 기사는 51CTO.COM에서 복제됩니다. 침해가 있는 경우 admin@php.cn으로 문의하시기 바랍니다. 삭제
마찰에서 흐름까지 : AI가 법적 작업을 재구성하는 방법마찰에서 흐름까지 : AI가 법적 작업을 재구성하는 방법May 09, 2025 am 11:29 AM

법률 기술 혁명은 법률 전문가가 AI 솔루션을 적극적으로 수용하도록 추진력을 얻고 있습니다. 수동 저항은 더 이상 경쟁력을 유지하려는 사람들에게는 실행 가능한 옵션이 아닙니다. 기술 채택이 중요한 이유는 무엇입니까? 법률 전문가

이것이 Ai가 당신을 생각하고 당신에 대해 알고있는 것입니다.이것이 Ai가 당신을 생각하고 당신에 대해 알고있는 것입니다.May 09, 2025 am 11:24 AM

많은 사람들은 AI와의 상호 작용이 익명이며 인간의 의사 소통과는 대조적이라고 가정합니다. 그러나 AI는 모든 채팅 중에 사용자를 적극적으로 프로파일 링합니다. 모든 프롬프트, 모든 단어는 분석 및 분류됩니다. AI Revo 의이 중요한 측면을 살펴 보겠습니다

번성하고 준비된 기업 문화를 구축하기위한 7 단계번성하고 준비된 기업 문화를 구축하기위한 7 단계May 09, 2025 am 11:23 AM

성공적인 인공 지능 전략은 강력한 기업 문화 지원과 분리 될 수 없습니다. Peter Drucker가 말했듯이 비즈니스 운영은 사람들에게 달려 있으며 인공 지능의 성공도 마찬가지입니다. 인공 지능을 적극적으로 수용하는 조직의 경우 AI에 적응하는 기업 문화를 구축하는 것이 중요하며 AI 전략의 성공 또는 실패조차 결정합니다. West Monroe는 최근에 번성하는 AI 친화적 인 기업 문화를 구축하기위한 실용적인 가이드를 발표했으며 다음은 다음과 같습니다. 1. AI의 성공 모델을 명확하게 설명하십시오. 우선, AI가 비즈니스를 강화할 수있는 방법에 대한 명확한 비전이 있어야합니다. 이상적인 AI 운영 문화는 인간과 AI 시스템 간의 작업 프로세스를 자연스럽게 통합 할 수 있습니다. AI는 특정 작업에 능숙하지만 인간은 창의성과 판단에 능숙합니다.

Netflix New Scroll, Meta AI AI의 게임 체인저, Neuralink는 85 억 달러에 달했습니다.Netflix New Scroll, Meta AI AI의 게임 체인저, Neuralink는 85 억 달러에 달했습니다.May 09, 2025 am 11:22 AM

메타 업그레이드 AI 보조 응용 프로그램 및 웨어러블 AI의 시대가오고 있습니다! ChatGpt와 경쟁하도록 설계된이 앱은 텍스트, 음성 상호 작용, 이미지 생성 및 웹 검색과 같은 표준 AI 기능을 제공하지만 이제 지리적 위치 기능을 처음으로 추가했습니다. 이것은 메타 AI가 자신의 위치와 질문에 대답 할 때보고있는 내용을 알고 있음을 의미합니다. 귀하의 관심사, 위치, 프로필 및 활동 정보를 사용하여 이전에는 불가능한 최신 상황 정보를 제공합니다. 이 앱은 또한 실시간 번역을 지원하여 Ray-Ban 안경의 AI 경험을 완전히 바꾸고 유용성을 크게 향상 시켰습니다. 외국 영화에 대한 관세 부과는 미디어와 문화에 대한 권력의 알몸 운동입니다. 구현되면 AI 및 가상 프로덕션으로 가속됩니다.

오늘이 단계를 수행하여 AI 사이버 범죄로부터 자신을 보호하십시오.오늘이 단계를 수행하여 AI 사이버 범죄로부터 자신을 보호하십시오.May 09, 2025 am 11:19 AM

인공 지능은 사이버 범죄 분야를 혁신하여 새로운 방어 기술을 배우도록 강요하고 있습니다. 사이버 범죄자들은 ​​깊은 위조 및 지능형 사이버 공격과 같은 강력한 인공 지능 기술을 사용하여 전례없는 규모로 사기 및 파괴를 사용하고 있습니다. 글로벌 비즈니스의 87%가 지난해 AI 사이버 범죄를 목표로 한 것으로보고되었습니다. 그렇다면이 현명한 범죄의 물결의 희생자가되는 것을 어떻게 피할 수 있습니까? 개인 및 조직 차원에서 위험을 식별하고 보호 조치를 취하는 방법을 살펴 보겠습니다. 사이버 범죄자가 인공 지능을 사용하는 방법 기술이 발전함에 따라 범죄자들은 ​​개인, 기업 및 정부를 공격 할 수있는 새로운 방법을 지속적으로 찾고 있습니다. 인공 지능의 광범위한 사용은 최신 측면 일 수 있지만 잠재적 인 피해는 전례가 없습니다. 특히 인공 지능

공생 춤 : 인공 및 자연 인식의 고리 탐색공생 춤 : 인공 및 자연 인식의 고리 탐색May 09, 2025 am 11:13 AM

인공 지능 (AI)과 인간 지능 (NI) 사이의 복잡한 관계는 피드백 루프로 가장 잘 이해됩니다. 인간은 AI를 만들어 인간 활동에 의해 생성 된 데이터에 대해 인간 능력을 향상 시키거나 복제합니다. 이 ai

AI의 가장 큰 비밀 - 제작자는 이해하지 못하고 전문가가 분할AI의 가장 큰 비밀 - 제작자는 이해하지 못하고 전문가가 분할May 09, 2025 am 11:09 AM

최첨단 AI 모델을 둘러싼 이해의 부족을 강조한 Anthropic의 최근 진술은 전문가들 사이에서 격렬한 논쟁을 불러 일으켰습니다. 이 불투명도는 진정한 기술 위기입니까, 아니면 단순히 더 많은 소프로가는 길에 일시적인 장애물입니까?

Sarvam AI의 Bulbul-V2 : 인도 최고의 TTS 모델Sarvam AI의 Bulbul-V2 : 인도 최고의 TTS 모델May 09, 2025 am 10:52 AM

인도는 풍부한 언어 태피스트리를 가진 다양한 국가로 지역 간의 원활한 의사 소통을 지속적으로 도전합니다. 그러나 Sarvam의 Bulbul-V2

See all articles

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

Video Face Swap

Video Face Swap

완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

뜨거운 도구

MinGW - Windows용 미니멀리스트 GNU

MinGW - Windows용 미니멀리스트 GNU

이 프로젝트는 osdn.net/projects/mingw로 마이그레이션되는 중입니다. 계속해서 그곳에서 우리를 팔로우할 수 있습니다. MinGW: GCC(GNU Compiler Collection)의 기본 Windows 포트로, 기본 Windows 애플리케이션을 구축하기 위한 무료 배포 가능 가져오기 라이브러리 및 헤더 파일로 C99 기능을 지원하는 MSVC 런타임에 대한 확장이 포함되어 있습니다. 모든 MinGW 소프트웨어는 64비트 Windows 플랫폼에서 실행될 수 있습니다.

ZendStudio 13.5.1 맥

ZendStudio 13.5.1 맥

강력한 PHP 통합 개발 환경

SecList

SecList

SecLists는 최고의 보안 테스터의 동반자입니다. 보안 평가 시 자주 사용되는 다양한 유형의 목록을 한 곳에 모아 놓은 것입니다. SecLists는 보안 테스터에게 필요할 수 있는 모든 목록을 편리하게 제공하여 보안 테스트를 더욱 효율적이고 생산적으로 만드는 데 도움이 됩니다. 목록 유형에는 사용자 이름, 비밀번호, URL, 퍼징 페이로드, 민감한 데이터 패턴, 웹 셸 등이 포함됩니다. 테스터는 이 저장소를 새로운 테스트 시스템으로 간단히 가져올 수 있으며 필요한 모든 유형의 목록에 액세스할 수 있습니다.

SublimeText3 영어 버전

SublimeText3 영어 버전

권장 사항: Win 버전, 코드 프롬프트 지원!

VSCode Windows 64비트 다운로드

VSCode Windows 64비트 다운로드

Microsoft에서 출시한 강력한 무료 IDE 편집기