Background
사실 처음에는 pymysql을 사용했는데 유지관리가 번거롭고 코드 인젝션의 위험이 있다는 것을 알고 그냥 ORM 프레임워크를 직접 사용했습니다.
ORM은 간단히 말해서 데이터베이스 테이블과 Python 클래스 간의 매핑으로 이해하면 되는 Object Relational Mapper입니다. Python 클래스를 조작하여 간접적으로 데이터베이스를 조작할 수 있습니다.
더 유명한 Python ORM 프레임워크는 SQLAlchemy와 Peewee입니다. 여기서는 비교하지 않고 SQLAlchemy의 개인적인 용도에 대해 간단히 설명하겠습니다.
- sqlalchemy 버전: 1.3.15
- pymysql 버전: 0.9.3
- mysql 버전: 5.7
초기화 작업
일반적으로 ORM 프레임워크를 사용하면 데이터베이스 연결, 기본 매핑 정의 등
MySQL을 예로 들어 데이터베이스 연결을 생성하려면 DSN 문자열만 전달하면 됩니다. Echo는 해당 SQL 문을 출력할지 여부를 나타내며 이는 디버깅에 도움이 됩니다.
from sqlalchemy import create_engine engine = create_engine('mysql+pymysql://$user:$password@$host:$port/$db?charset=utf8mb4', echo=True)
개인 디자인
저는 개인적으로 ORM 프레임워크를 소개할 때 내 프로젝트에서 다음 디자인에 대해 MVC 패턴을 참조하게 됩니다. 그 중 모델은 일부 데이터베이스 모델을 저장합니다. 즉, 데이터베이스 테이블에 매핑된 Python 클래스는 호출자(예: main.py)에 해당하는 작업, 즉 추가, 삭제, 확인 및 수정을 저장합니다. 데이터베이스 작업을 수행하고, model_op 레이어만 호출하면 되며, 디커플링을 달성하기 위해 모델 레이어에 신경 쓸 필요가 없습니다.
├── main.py ├── model │ ├── __init__.py │ ├── base_model.py │ ├── ddl.sql │ └── py_orm_model.py └── model_op ├── __init__.py └── py_orm_model_op.py
Mapping 문(모델 소개)
예를 들어 이런 테스트 테이블이 있다면
create table py_orm ( `id` int(11) NOT NULL AUTO_INCREMENT COMMENT '唯一id', `name` varchar(255) NOT NULL DEFAULT '' COMMENT '名称', `attr` JSON NOT NULL COMMENT '属性', `ct` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP COMMENT '创建时间', `ut` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP ON update CURRENT_TIMESTAMP COMMENT '更新时间', PRIMARY KEY(`id`) )ENGINE=InnoDB COMMENT '测试表';
ORM 프레임워크에서 매핑의 결과는 아래의 Python 클래스입니다
# py_orm_model.py from .base_model import Base from sqlalchemy import Column, Integer, String, TIMESTAMP, text, JSON class PyOrmModel(Base): __tablename__ = 'py_orm' id = Column(Integer, autoincrement=True, primary_key=True, comment='唯一id') name = Column(String(255), nullable=False, default='', comment='名称') attr = Column(JSON, nullable=False, comment='属性') ct = Column(TIMESTAMP, nullable=False, server_default=text('CURRENT_TIMESTAMP'), comment='创建时间') ut = Column(TIMESTAMP, nullable=False, server_default=text('CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP'), comment='更新时间')
먼저 PyOrmModel 상속을 볼 수 있습니다. 기본 클래스는 sqlalchemy에서 제공하는 기본 클래스입니다. 우리가 선언한 Python 클래스에 대해 몇 가지 검사를 수행합니다.
# base_model.py # 一般base_model做的都是一些初始化的工作 from sqlalchemy import create_engine from sqlalchemy.ext.declarative import declarative_base Base = declarative_base() engine = create_engine("mysql+pymysql://root:123456@127.0.0.1:33306/orm_test?charset=utf8mb4", echo=False)
두 번째로, 각 Python 클래스에는 __tablename__ 속성이 포함되어야 합니다. 그렇지 않으면 해당 테이블을 찾을 수 없습니다.
셋째, 데이터 테이블을 생성하는 방법에는 두 가지가 있습니다. 첫 번째는 물론 Python 클래스 정의에 문제가 없으면 정상적으로 작동할 수 있습니다. 아래와 같은 ORM 프레임워크를 통해:
# main.py # 注意这里的导入路径,Base创建表时会寻找继承它的子类,如果路径不对,则无法创建成功 from sqlachlemy_lab import Base, engine if __name__ == '__main__': Base.metadata.create_all(engine)
생성 효과:
... 2020-04-04 10:12:53,974 INFO sqlalchemy.engine.base.Engine CREATE TABLE py_orm ( id INTEGER NOT NULL AUTO_INCREMENT, name VARCHAR(255) NOT NULL DEFAULT '' COMMENT '名称', attr JSON NOT NULL COMMENT '属性', ct TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP, ut TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP, PRIMARY KEY (id) )
넷째, 필드 속성 관련
- 1.primary_key 및 자동 증가는 이해하기 더 쉽고 MySQL의 기본 키이자 증분 속성입니다.
- 2. int형일 경우 길이를 지정하지 않아도 되지만, varchar형일 경우 길이를 지정해야 합니다.
- 3.nullable은 MySQL
- 4에서 NULL 및 NOT NULL에 해당합니다. default 및 server_default 정보: default는 ORM 프레임워크 수준의 기본값을 나타냅니다. 즉, 삽입 시 필드에 값이 할당되지 않은 경우 정의는 다음과 같습니다. 기본값은 server_default로 데이터베이스 수준의 기본값, 즉 DDL 문의 기본 키워드를 나타냅니다.
세션 소개
SQLAlchemy 문서에는 데이터베이스에 대한 추가, 삭제, 수정이 세션을 통해 수행된다고 언급되어 있습니다.
>>> from sqlalchemy.orm import sessionmaker >>> Session = sessionmaker(bind=engine) >>> session = Session() >>> orm = PyOrmModel(id=1, name='test', attr={}) >>> session.add(orm) >>> session.commit() >>> session.close()
위와 같이 각 작업에 대해 세션을 획득, 제출 및 해제해야 함을 알 수 있습니다. 이는 너무 중복되고 번거롭기 때문에 일반적으로 캡슐화 계층을 수행합니다.
1. 비정상적인 롤백 및 세션 종료를 처리하려면 컨텍스트 관리자를 사용하세요. 이 부분은 참조된 기사와 거의 일치합니다.
# base_model.py from contextlib import contextmanager from sqlalchemy.orm import sessionmaker, scoped_session def _get_session(): """获取session""" return scoped_session(sessionmaker(bind=engine, expire_on_commit=False))() # 在这里对session进行统一管理,包括获取,提交,回滚和关闭 @contextmanager def db_session(commit=True): session = _get_session() try: yield session if commit: session.commit() except Exception as e: session.rollback() raise e finally: if session: session.close()
2. 모델과 dict 간의 변환을 위해 PyOrmModel에 두 가지 메소드를 추가합니다.
class PyOrmModel(Base): ... @staticmethod def fields(): return ['id', 'name', 'attr'] @staticmethod def to_json(model): fields = PyOrmModel.fields() json_data = {} for field in fields: json_data[field] = model.__getattribute__(field) return json_data @staticmethod def from_json(data: dict): fields = PyOrmModel.fields() model = PyOrmModel() for field in fields: if field in data: model.__setattr__(field, data[field]) return model
3. 데이터베이스 작업의 캡슐화 참조 기사와 다르게 세션을 직접 호출하므로 주의할 필요가 있습니다. 모델 레이어를 축소하고 결합을 줄입니다.
# py_orm_model_op.py from sqlachlemy_lab.model import db_session from sqlachlemy_lab.model import PyOrmModel class PyOrmModelOp: def __init__(self): pass @staticmethod def save_data(data: dict): with db_session() as session: model = PyOrmModel.from_json(data) session.add(model) # 查询操作,不需要commit @staticmethod def query_data(pid: int): data_list = [] with db_session(commit=False) as session: data = session.query(PyOrmModel).filter(PyOrmModel.id == pid) for d in data: data_list.append(PyOrmModel.to_json(d)) return data_list
4. 호출자
# main.py from sqlachlemy_lab.model_op import PyOrmModelOp if __name__ == '__main__': PyOrmModelOp.save_data({'id': 1, 'name': 'test', 'attr': {}})
전체 코드는 다음을 참조하세요.
https://github.com/yangancode/python_lab/tree/master/sqlachlemy_lab
위 내용은 초보자가 5분 안에 Python을 배우고 SQL을 다룰 수 있는 마법의 도구입니다!의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

PythonArraysSupportVariousOperations : 1) SlicingExtractsSubsets, 2) 추가/확장 어드먼트, 3) 삽입 값 삽입 ATSpecificPositions, 4) retingdeletesElements, 5) 분류/ReversingChangesOrder 및 6) ListsompectionScreateNewListSbasedOnsistin

NumpyArraysareSentialplosplicationSefficationSefficientNumericalcomputationsanddatamanipulation. Theyarcrucialindatascience, MachineLearning, Physics, Engineering 및 Financeduetotheiribility에 대한 handlarge-scaledataefficivally. forexample, Infinancialanyaly

UseanArray.ArrayOveralistInpyThonWhendealingwithhomogeneousData, Performance-CriticalCode, OrinterFacingwithCcode.1) HomogeneousData : ArraysSaveMemorywithtypepletement.2) Performance-CriticalCode : arraysofferbetterporcomanceFornumericalOperations.3) Interf

아니요, NOTALLLISTOPERATIONARESUPPORTEDBYARRARES, andVICEVERSA.1) ArraySDONOTSUPPORTDYNAMICOPERATIONSLIKEPENDORINSERTWITHUTRESIGING, WHITHIMPACTSPERFORMANCE.2) ListSDONOTEECONSTANTTIMECOMPLEXITEFORDITITICCESSLIKEARRAYSDO.

ToaccesselementsInapyThonlist, 사용 인덱싱, 부정적인 인덱싱, 슬라이스, 오리 화.

Arraysinpython, 특히 비밀 복구를위한 ArecrucialInscientificcomputing.1) theaRearedFornumericalOperations, DataAnalysis 및 MachinELearning.2) Numpy'SimplementationIncensuressuressurations thanpythonlists.3) arraysenablequick

Pyenv, Venv 및 Anaconda를 사용하여 다양한 Python 버전을 관리 할 수 있습니다. 1) PYENV를 사용하여 여러 Python 버전을 관리합니다. Pyenv를 설치하고 글로벌 및 로컬 버전을 설정하십시오. 2) VENV를 사용하여 프로젝트 종속성을 분리하기 위해 가상 환경을 만듭니다. 3) Anaconda를 사용하여 데이터 과학 프로젝트에서 Python 버전을 관리하십시오. 4) 시스템 수준의 작업을 위해 시스템 파이썬을 유지하십시오. 이러한 도구와 전략을 통해 다양한 버전의 Python을 효과적으로 관리하여 프로젝트의 원활한 실행을 보장 할 수 있습니다.

Numpyarrayshaveseveraladvantagesstandardpythonarrays : 1) thearemuchfasterduetoc 기반 간증, 2) thearemorememory-refficient, 특히 withlargedatasets 및 3) wepferoptizedformationsformationstaticaloperations, 만들기, 만들기


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

VSCode Windows 64비트 다운로드
Microsoft에서 출시한 강력한 무료 IDE 편집기

Atom Editor Mac 버전 다운로드
가장 인기 있는 오픈 소스 편집기

ZendStudio 13.5.1 맥
강력한 PHP 통합 개발 환경

MinGW - Windows용 미니멀리스트 GNU
이 프로젝트는 osdn.net/projects/mingw로 마이그레이션되는 중입니다. 계속해서 그곳에서 우리를 팔로우할 수 있습니다. MinGW: GCC(GNU Compiler Collection)의 기본 Windows 포트로, 기본 Windows 애플리케이션을 구축하기 위한 무료 배포 가능 가져오기 라이브러리 및 헤더 파일로 C99 기능을 지원하는 MSVC 런타임에 대한 확장이 포함되어 있습니다. 모든 MinGW 소프트웨어는 64비트 Windows 플랫폼에서 실행될 수 있습니다.

DVWA
DVWA(Damn Vulnerable Web App)는 매우 취약한 PHP/MySQL 웹 애플리케이션입니다. 주요 목표는 보안 전문가가 법적 환경에서 자신의 기술과 도구를 테스트하고, 웹 개발자가 웹 응용 프로그램 보안 프로세스를 더 잘 이해할 수 있도록 돕고, 교사/학생이 교실 환경 웹 응용 프로그램에서 가르치고 배울 수 있도록 돕는 것입니다. 보안. DVWA의 목표는 다양한 난이도의 간단하고 간단한 인터페이스를 통해 가장 일반적인 웹 취약점 중 일부를 연습하는 것입니다. 이 소프트웨어는
