찾다
백엔드 개발파이썬 튜토리얼Python에서 Lambda 함수 사용에 대한 간략한 설명

Python에서 Lambda 함수 사용에 대한 간략한 설명

오늘 저는 매우 사용하기 쉬운 Python 내장 함수인 람다 방식을 추천하고 싶습니다. 이 튜토리얼에서는 대략적으로 다음과 같은 내용을 공유하겠습니다.

  • 람다 함수란 무엇입니까
  • lambda 함수? 필터 목록 요소
  • lambda 함수와 map() 메서드의 조합
  • 람다 함수와 apply() 메서드의 조합
  • 람다 메서드를 사용하기에 적합하지 않은 경우

Lambda 함수란 무엇입니까

파이썬에서 우리는 익명 함수를 선언하기 위해 종종 람다 키워드를 사용합니다. 소위 익명 함수는 일반인의 관점에서 이름이 없는 함수입니다. 구체적인 구문 형식은 다음과 같습니다.

lambda arguments : expression

매개변수 수에는 제한이 없습니다. 하나의 표현식을 허용하며, 표현식의 결과는 함수의 반환 값입니다. 간단히 예를 작성하면 됩니다.

(lambda x:x**2)(5)

output:

25

Filter the elements in the list

그러면 어떻게 목록의 요소를 필터링합니까? 목록? 여기서는 람다 함수와 filter() 메서드, 그리고 filter() 메서드의 구문 형식을 결합해야 합니다.

filter(function, iterable)
  • function -- 판단 함수
  • iterable -- 반복 가능한 개체, 목록 또는 사전

중에서

import numpy as np
yourlist = list(np.arange(2,50,3))

그 중에서 2의 거듭제곱보다 100보다 작은 요소를 필터링하려고 합니다. 다음과 같이 익명 함수를 정의해 보겠습니다.

lambda x:x**2<100

최종 결과는 다음과 같습니다. :

list(filter(lambda x:x**2<100, yourlist))

output:

[2, 5, 8]

복잡한 계산 과정을 접한다면 여기 편집자는 함수를 직접 맞춤 설정하는 것을 권장하지만, 단순한 계산 과정이라면 람다 익명 함수가 확실히 최선의 선택입니다.

map() 함수와 함께 사용

map() 함수의 구문은 다음 익명 함수와 같이 위의 filter() 함수와 유사합니다.

lambda x: x**2+x**3

map() 메서드와 함께 사용합니다.

list(map(lambda x: x**2+x**3, yourlist))

출력:

[12,
 150,
 576,
 1452,
 2940,
 5202,
 ......]

물론 앞서 언급했듯이 람다 익명 함수는 여러 개의 매개변수를 허용할 수 있습니다. 예를 들어 두 개의 목록 세트가 있습니다.

mylist = list(np.arange(4,52,3))
yourlist = list(np.arange(2,50,3))

map() 메소드 작업, 코드는 다음과 같습니다:

list(map(lambda x,y: x**2+y**2, yourlist,mylist))

출력:

[20,
 74,
 164,
 290,
 452,
 650,
 884,
 1154,
......]

및 apply() 메소드의 조합

apply() 메소드는 Pandas 데이터 테이블에서 더 많이 사용되며 적용 시 람다 익명성이 적용됩니다. () 메소드 함수를 사용하여 아래와 같이 새 데이터 테이블을 생성합니다.

myseries = pd.Series(mylist)
myseries

output:

04
17
2 10
3 13
4 16
5 19
6 22
7 25
8 28
......
dtype: int32

apply() 메소드의 사용은 map() 메소드와 필터 모두에서 약간 다릅니다. () 메서드를 사용하려면 반복 가능한 개체를 변환해야 하며 여기에서는 Apply()가 필요하지 않습니다.

myseries.apply(lambda x: (x+5)/x**2)

output:

0 0.562500
1 0.244898
2 0.150000
3 0.106509
4 0.082031
5 0.066482
6 0.055785
7 0.048000
......
dtype: float64

그리고 DataFarme 테이블 데이터를 만나면 동일한 작업이 수행됩니다

df = pd.read_csv(r'Dummy_Sales_Data_v1.csv')
df["Sales_Manager"] = df["Sales_Manager"].apply(lambda x: x.upper())
df["Sales_Manager"].head()

output:

0PABLO
1PABLO
2KRISTEN
3ABDUL
4 STELLA
Name: Sales_Manager, dtype: object

그리고 apply() 메소드를 통해 str.upper() 메소드를 직접 사용하는 것보다 처리가 더 빠릅니다! !

사용하기에 적합하지 않은 시나리오

그럼 사용하기에 적합하지 않은 시나리오는 무엇일까요? 따라서 우선 람다 함수는 익명 함수이므로 변수에 할당하는 데 적합하지 않습니다. 예를 들어 다음과 같은 경우에는

squared_sum = lambda x,y: x**2 + y**2
squared_sum(3,4)

비교하면 처리를 위해 함수를 사용자 정의하는 것이 좋습니다.

def squared_sum(x,y):
return x**2 + y**2

squared_sum(3,4)

출력:

25

다음 상황에 직면하면 코드를 약간 단순화할 수 있습니다:

import math
mylist = [10, 25, 40, 49, 65, 81]
sqrt_list = list(map(lambda x: math.sqrt(x), mylist))
sqrt_list

output:

[3.16227766, 5.0, 6.324555320, 7.0, 8.062257748, 9.0]

다음과 같이 단순화할 수 있습니다:

import math
mylist = [10, 25, 40, 49, 65, 81]
sqrt_list = list(map(math.sqrt, mylist))
sqrt_list

output:

[3.162277, 5.0, 6.324555, 7.0, 8.062257, 9.0]

에 내장 함수인 경우 Python은 특히 수학 등 산술에 사용되는 모듈입니다. 람다 함수에 넣을 필요 없이 직접 추출하여 사용할 수 있습니다

위 내용은 Python에서 Lambda 함수 사용에 대한 간략한 설명의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

성명
이 기사는 51CTO.COM에서 복제됩니다. 침해가 있는 경우 admin@php.cn으로 문의하시기 바랍니다. 삭제
파이썬 : 게임, Guis 등파이썬 : 게임, Guis 등Apr 13, 2025 am 12:14 AM

Python은 게임 및 GUI 개발에서 탁월합니다. 1) 게임 개발은 Pygame을 사용하여 드로잉, 오디오 및 기타 기능을 제공하며 2D 게임을 만드는 데 적합합니다. 2) GUI 개발은 Tkinter 또는 PYQT를 선택할 수 있습니다. Tkinter는 간단하고 사용하기 쉽고 PYQT는 풍부한 기능을 가지고 있으며 전문 개발에 적합합니다.

Python vs. C : 응용 및 사용 사례가 비교되었습니다Python vs. C : 응용 및 사용 사례가 비교되었습니다Apr 12, 2025 am 12:01 AM

Python은 데이터 과학, 웹 개발 및 자동화 작업에 적합한 반면 C는 시스템 프로그래밍, 게임 개발 및 임베디드 시스템에 적합합니다. Python은 단순성과 강력한 생태계로 유명하며 C는 고성능 및 기본 제어 기능으로 유명합니다.

2 시간의 파이썬 계획 : 현실적인 접근2 시간의 파이썬 계획 : 현실적인 접근Apr 11, 2025 am 12:04 AM

2 시간 이내에 Python의 기본 프로그래밍 개념과 기술을 배울 수 있습니다. 1. 변수 및 데이터 유형을 배우기, 2. 마스터 제어 흐름 (조건부 명세서 및 루프), 3. 기능의 정의 및 사용을 이해하십시오. 4. 간단한 예제 및 코드 스 니펫을 통해 Python 프로그래밍을 신속하게 시작하십시오.

파이썬 : 기본 응용 프로그램 탐색파이썬 : 기본 응용 프로그램 탐색Apr 10, 2025 am 09:41 AM

Python은 웹 개발, 데이터 과학, 기계 학습, 자동화 및 스크립팅 분야에서 널리 사용됩니다. 1) 웹 개발에서 Django 및 Flask 프레임 워크는 개발 프로세스를 단순화합니다. 2) 데이터 과학 및 기계 학습 분야에서 Numpy, Pandas, Scikit-Learn 및 Tensorflow 라이브러리는 강력한 지원을 제공합니다. 3) 자동화 및 스크립팅 측면에서 Python은 자동화 된 테스트 및 시스템 관리와 ​​같은 작업에 적합합니다.

2 시간 안에 얼마나 많은 파이썬을 배울 수 있습니까?2 시간 안에 얼마나 많은 파이썬을 배울 수 있습니까?Apr 09, 2025 pm 04:33 PM

2 시간 이내에 파이썬의 기본 사항을 배울 수 있습니다. 1. 변수 및 데이터 유형을 배우십시오. 이를 통해 간단한 파이썬 프로그램 작성을 시작하는 데 도움이됩니다.

10 시간 이내에 프로젝트 및 문제 중심 방법에서 컴퓨터 초보자 프로그래밍 기본 사항을 가르치는 방법?10 시간 이내에 프로젝트 및 문제 중심 방법에서 컴퓨터 초보자 프로그래밍 기본 사항을 가르치는 방법?Apr 02, 2025 am 07:18 AM

10 시간 이내에 컴퓨터 초보자 프로그래밍 기본 사항을 가르치는 방법은 무엇입니까? 컴퓨터 초보자에게 프로그래밍 지식을 가르치는 데 10 시간 밖에 걸리지 않는다면 무엇을 가르치기로 선택 하시겠습니까?

중간 독서를 위해 Fiddler를 사용할 때 브라우저에서 감지되는 것을 피하는 방법은 무엇입니까?중간 독서를 위해 Fiddler를 사용할 때 브라우저에서 감지되는 것을 피하는 방법은 무엇입니까?Apr 02, 2025 am 07:15 AM

Fiddlerevery Where를 사용할 때 Man-in-the-Middle Reading에 Fiddlereverywhere를 사용할 때 감지되는 방법 ...

Python 3.6에 피클 파일을로드 할 때 '__builtin__'모듈을 찾을 수없는 경우 어떻게해야합니까?Python 3.6에 피클 파일을로드 할 때 '__builtin__'모듈을 찾을 수없는 경우 어떻게해야합니까?Apr 02, 2025 am 07:12 AM

Python 3.6에 피클 파일로드 3.6 환경 보고서 오류 : modulenotfounderror : nomodulename ...

See all articles

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

AI Hentai Generator

AI Hentai Generator

AI Hentai를 무료로 생성하십시오.

인기 기사

R.E.P.O. 에너지 결정과 그들이하는 일 (노란색 크리스탈)
3 몇 주 전By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. 최고의 그래픽 설정
3 몇 주 전By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. 아무도들을 수없는 경우 오디오를 수정하는 방법
3 몇 주 전By尊渡假赌尊渡假赌尊渡假赌
WWE 2K25 : Myrise에서 모든 것을 잠금 해제하는 방법
4 몇 주 전By尊渡假赌尊渡假赌尊渡假赌

뜨거운 도구

맨티스BT

맨티스BT

Mantis는 제품 결함 추적을 돕기 위해 설계된 배포하기 쉬운 웹 기반 결함 추적 도구입니다. PHP, MySQL 및 웹 서버가 필요합니다. 데모 및 호스팅 서비스를 확인해 보세요.

MinGW - Windows용 미니멀리스트 GNU

MinGW - Windows용 미니멀리스트 GNU

이 프로젝트는 osdn.net/projects/mingw로 마이그레이션되는 중입니다. 계속해서 그곳에서 우리를 팔로우할 수 있습니다. MinGW: GCC(GNU Compiler Collection)의 기본 Windows 포트로, 기본 Windows 애플리케이션을 구축하기 위한 무료 배포 가능 가져오기 라이브러리 및 헤더 파일로 C99 기능을 지원하는 MSVC 런타임에 대한 확장이 포함되어 있습니다. 모든 MinGW 소프트웨어는 64비트 Windows 플랫폼에서 실행될 수 있습니다.

ZendStudio 13.5.1 맥

ZendStudio 13.5.1 맥

강력한 PHP 통합 개발 환경

에디트플러스 중국어 크랙 버전

에디트플러스 중국어 크랙 버전

작은 크기, 구문 강조, 코드 프롬프트 기능을 지원하지 않음

스튜디오 13.0.1 보내기

스튜디오 13.0.1 보내기

강력한 PHP 통합 개발 환경