제조업체는 생산 개선, 품질 관리, 효율성 향상 등 다양한 방식으로 인공 지능의 이점을 누릴 수 있습니다. AI는 제조업체에 여러 가지 새로운 애플리케이션을 제공하지만, 기업이 최대한의 가치를 얻으려면 전체 제조 프로세스에서 AI를 사용해야 합니다.
이는 제조 엔지니어가 중단 없는 제조 프로세스에서 AI를 성공적으로 사용하려면 AI 데이터 준비, 모델링, 시뮬레이션 및 테스트, 배포의 네 가지 주요 측면에 집중해야 함을 의미합니다.
AI 전문가가 될 필요는 없습니다
엔지니어들은 AI 모델을 개발하는 데 꽤 오랜 시간이 걸린다고 생각할 수도 있지만 그렇지 않은 경우가 많습니다. 모델링은 워크플로우 프로세스에서 중요한 단계이지만 최종 목표는 아닙니다. AI를 성공적으로 사용하려면 프로세스 초기에 문제를 식별하는 것이 중요합니다. 이를 통해 엔지니어는 워크플로의 어떤 측면에서 최상의 결과를 얻기 위해 시간과 리소스를 투자해야 하는지 알 수 있습니다.
워크플로를 논의할 때 고려해야 할 두 가지 사항이 있습니다.
제조 시스템은 크고 복잡하며 인공 지능은 그 일부일 뿐입니다. 따라서 AI는 모든 시나리오에서 생산 라인의 다른 모든 작업 부품과 함께 작동해야 합니다. 그 중 일부는 OPCUA와 같은 산업용 통신 프로토콜과 제어 및 모니터링 로직, 인간-기계 인터페이스와 같은 기타 기계 소프트웨어를 사용하여 장비의 센서에서 데이터를 수집하는 것입니다.
이 경우 엔지니어는 광범위한 AI 경험 여부에 관계없이 이미 장치를 이해하고 있기 때문에 AI를 통합할 때 이미 성공할 준비가 되어 있습니다. 즉, AI 전문가가 아니더라도 전문 지식을 활용하여 워크플로우에 AI를 성공적으로 추가할 수 있습니다.
AI 기반 워크플로
AI 기반 워크플로를 구축하려면 다음 4단계가 필요합니다.
1. 데이터 준비
AI 모델을 교육할 좋은 데이터가 없으면 프로젝트가 실패할 가능성이 더 높습니다. 따라서 데이터 준비가 중요합니다. 잘못된 데이터로 인해 엔지니어는 모델이 작동하지 않는 이유를 파악하는 데 시간이 걸릴 수 있습니다.
모델 교육은 일반적으로 가장 시간이 많이 걸리는 단계이지만 중요한 단계이기도 합니다. 엔지니어는 가능한 가장 명확하고 레이블이 지정된 데이터부터 시작해야 하며 모델 개선에 집중하기보다는 모델에 데이터를 공급하는 데 집중해야 합니다.
예를 들어 엔지니어는 매개변수를 조정하고 모델을 미세 조정하기보다는 전처리에 집중하고 모델에 입력된 데이터의 라벨이 올바르게 지정되었는지 확인해야 합니다. 이렇게 하면 모델이 데이터를 이해하고 처리할 수 있습니다.
또 다른 과제는 기계 운영자와 기계 제조업체 간의 차이입니다. 전자는 일반적으로 장치 작동에 액세스할 수 있는 반면, 후자는 AI 모델을 훈련하기 위해 이 데이터가 필요합니다. 기계 제조업체가 기계 운영자(즉, 고객)와 데이터를 공유하도록 하려면 양 당사자는 이러한 공유를 관리할 프로토콜과 비즈니스 모델을 개발해야 합니다.
건설 장비 제조업체인 Caterpillar는 데이터 준비의 중요성을 보여주는 좋은 예입니다. 대량의 현장 데이터를 수집하는데, 이는 정확한 AI 모델링을 위해 필요한 반면, 데이터 정리 및 라벨링에는 많은 시간이 필요하다는 의미입니다. 회사는 MATLAB을 성공적으로 활용하여 이 프로세스를 간소화했습니다. 이는 회사가 현장 기계에서 얻은 강력한 통찰력을 활용하여 기계 학습 모델에 입력할 수 있는 깨끗하고 레이블이 지정된 데이터를 개발하는 데 도움이 됩니다. 또한 해당 프로세스는 도메인 전문 지식이 있지만 AI 전문가는 아닌 사용자를 위해 확장 가능하고 유연합니다.
2. 인공 지능 모델링
이 단계는 데이터가 정리되고 적절하게 레이블이 지정된 후에 시작됩니다. 실제로 이는 모델이 데이터로부터 학습하는 단계입니다. 엔지니어는 입력을 기반으로 지능적인 결정을 내릴 수 있는 정확하고 신뢰할 수 있는 모델을 갖게 되면 성공적인 모델링 단계에 진입했다는 것을 알게 됩니다. 또한 이 단계에서는 엔지니어가 머신 러닝, 딥 러닝 또는 이 둘의 조합을 사용하여 가장 정확한 결과를 결정해야 합니다.
모델링 단계에서는 딥 러닝 모델을 사용하든 머신 러닝 모델을 사용하든 분류, 예측, 회귀와 같은 인공 지능 워크플로의 여러 알고리즘에 액세스하는 것이 중요합니다. 출발점으로 더 넓은 커뮤니티에서 만든 다양한 사전 구축 모델이 도움이 될 수 있습니다. 엔지니어는 MATLAB 및 Simulink와 같은 유연한 도구를 사용할 수도 있습니다.
알고리즘과 사전 구축된 모델이 좋은 시작이지만 엔지니어는 해당 분야의 다른 알고리즘과 사례를 사용하여 특정 목표를 달성하기 위한 가장 효율적인 경로를 찾아야 한다는 점은 주목할 가치가 있습니다. 이것이 바로 MATLAB이 여러 도메인에 걸쳐 AI 모델을 구축하기 위한 수백 가지의 다양한 예를 제공하는 이유입니다.
또한 고려해야 할 또 다른 측면은 변경 사항을 추적하고 훈련 반복을 기록하는 것이 중요하다는 것입니다. Experiment Manager와 같은 도구는 가장 정확한 모델과 재현 가능한 결과로 이어지는 매개변수를 해석하여 이를 달성하는 데 도움을 줄 수 있습니다.
3. 시뮬레이션 및 테스트
이 단계에서는 AI 모델이 올바르게 작동하는지 확인합니다. AI 모델은 더 큰 시스템의 일부이며 시스템의 다양한 부분과 함께 작동해야 합니다. 예를 들어 제조 분야에서 AI 모델은 예측 유지 관리, 동적 궤도 계획 또는 시각적 품질 검사를 지원할 수 있습니다.
나머지 기계 소프트웨어에는 제어, 모니터링 로직 및 기타 구성 요소가 포함됩니다. 시뮬레이션과 테스트를 통해 엔지니어는 모델의 일부가 자체적으로나 다른 시스템에서 예상대로 작동하고 있음을 알 수 있습니다. 모델은 예상대로 작동하고 위험을 줄일 만큼 효과적이라는 것을 입증할 수 있는 경우에만 실제 세계에서 사용할 수 있습니다.
상황이 어떻든 모델은 그에 맞게 반응해야 합니다. 모델을 사용하기 전에 엔지니어는 이 단계에서 몇 가지 질문을 이해해야 합니다.
- 모델이 매우 정확합니까?
- 각 시나리오에서 모델이 예상대로 작동합니까?
- 모든 예외 사례가 포함됩니까?
Simulink와 같은 도구 엔지니어는 기기에서 모델을 사용하기 전에 모델이 예상대로 실행되는지 확인할 수 있습니다. 이렇게 하면 재설계에 시간과 비용을 낭비하지 않아도 됩니다. 또한 이러한 도구는 모델의 의도된 사례를 성공적으로 시뮬레이션 및 테스트하고 예상 목표가 충족되었는지 확인함으로써 높은 수준의 신뢰를 구축하는 데 도움이 됩니다.
4. 배포
배포할 준비가 되면 다음 단계는 사용할 언어로 모델을 준비하는 것입니다. 이를 위해 엔지니어는 기성 모델을 공유해야 하는 경우가 많습니다. 이를 통해 모델은 내장형 컨트롤러, PLC 또는 에지 장치와 같은 특정 제어 하드웨어 환경에 맞게 조정될 수 있습니다. MATLAB과 같은 유연한 도구는 모든 유형의 시나리오에서 최종 코드를 생성할 수 있어 엔지니어가 다양한 하드웨어 공급업체의 다양한 환경에 모델을 배포할 수 있는 기능을 제공합니다. 원래 코드를 다시 작성하지 않고도 이 작업을 수행할 수 있습니다.
예를 들어, 모델을 PLC에 직접 배포할 때 자동 코드 생성을 통해 수동 프로그래밍 중에 포함될 수 있는 코딩 오류가 제거됩니다. 이는 또한 주요 공급업체의 PLC에서 효율적으로 실행되는 최적화된 C/C++ 또는 IEC61131 코드를 제공합니다.
인공지능의 성공적인 배포에는 데이터 과학자나 인공지능 전문가가 필요하지 않습니다. 그러나 엔지니어와 AI 모델이 성공을 준비하는 데 도움이 될 수 있는 몇 가지 핵심 리소스가 있습니다. 여기에는 과학자와 엔지니어를 위해 만들어진 특정 도구, AI를 워크플로에 추가하는 앱 및 기능, 논스톱 운영에 사용할 수 있는 다양한 배포 옵션, AI 관련 질문에 답할 준비가 된 전문가가 포함됩니다. 엔지니어에게 AI를 성공적으로 추가하는 데 도움이 되는 올바른 리소스를 제공하면 최상의 결과를 제공할 수 있습니다.
위 내용은 제조업에 인공지능을 성공적으로 적용하기 위한 4단계의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!
![chatgpt를 사용할 수 없습니다! 즉시 테스트 할 수있는 원인과 솔루션 설명 [최신 2025]](https://img.php.cn/upload/article/001/242/473/174717025174979.jpg?x-oss-process=image/resize,p_40)
chatgpt에 액세스 할 수 없습니까? 이 기사는 다양한 실용적인 솔루션을 제공합니다! 많은 사용자가 매일 chatgpt를 사용할 때 액세스 할 수 없거나 느린 응답과 같은 문제가 발생할 수 있습니다. 이 기사는 다양한 상황에 따라 이러한 문제를 단계별로 해결하도록 안내합니다. Chatgpt의 접근성 및 예비 문제 해결의 원인 먼저 문제가 OpenAI 서버 측 또는 사용자의 네트워크 또는 장치 문제에 있는지 확인해야합니다. 문제 해결을 위해 아래 단계를 따르십시오. 1 단계 : OpenAI의 공식 상태를 확인하십시오 chatgpt 서비스가 정상적으로 실행 중인지 확인하려면 OpenAi 상태 페이지 (status.openai.com)를 방문하십시오. 빨간색 또는 노란색 알람이 표시되면 열린 것을 의미합니다.

2025 년 5 월 10 일, MIT 물리학 자 Max Tegmark는 AI Labs가 인공 초 지능을 방출하기 전에 Oppenheimer의 삼위 일체 테스트 미적분학을 모방해야한다고 Guardian에게 말했다. “내 평가는 'Compton Constant', 인종이

AI 음악 제작 기술은 매일 매일 변화하고 있습니다. 이 기사는 Chatgpt와 같은 AI 모델을 예로 사용하여 AI를 사용하여 음악 제작을 지원하고 실제 사례에 대해 설명하는 방법을 자세히 설명합니다. 우리는 Sunoai, Hugging Face의 AI Jukebox 및 Python 's Music21 Library를 통해 음악을 만드는 방법을 소개합니다. 이러한 기술을 통해 모든 사람은 독창적 인 음악을 쉽게 만들 수 있습니다. 그러나 AI 생성 컨텐츠의 저작권 문제는 무시할 수 없으며 사용할 때는 신중해야합니다. 음악 분야에서 AI의 무한한 가능성을 모색 해 봅시다! OpenAi의 최신 AI 에이전트 "OpenAi Deep Research"가 소개됩니다. [chatgpt] ope

ChatGpt-4의 출현은 AI 응용 프로그램의 가능성을 크게 확장했습니다. GPT-3.5와 비교하여 ChatGpt-4는 상당히 개선되었습니다. 강력한 맥락 이해력이 있으며 이미지를 인식하고 생성 할 수도 있습니다. 그것은 보편적 인 AI 조수입니다. 비즈니스 효율성 향상 및 창출 지원과 같은 많은 분야에서 큰 잠재력을 보여주었습니다. 그러나 동시에, 우리는 또한 사용의 예방 조치에주의를 기울여야합니다. 이 기사에서는 ChatGpt-4의 특성을 자세히 설명하고 다양한 시나리오에 대한 효과적인 사용 방법을 소개합니다. 이 기사에는 최신 AI 기술을 최대한 활용하는 기술이 포함되어 있습니다. OpenAi의 최신 AI 에이전트, "OpenAi Deep Research"에 대한 자세한 내용은 아래 링크를 클릭하십시오.

chatgpt 앱 : AI 조수와 함께 창의력을 발휘하십시오! 초보자 가이드 Chatgpt 앱은 쓰기, 번역 및 질문 답변을 포함하여 광범위한 작업을 처리하는 혁신적인 AI 어시스턴트입니다. 창의적인 활동과 정보 수집에 유용한 끝없는 가능성이있는 도구입니다. 이 기사에서는 초보자를위한 이해하기 쉬운 방법, ChatGpt 스마트 폰 앱을 설치하는 방법, 음성 입력 기능 및 플러그인과 같은 앱의 고유 한 기능 및 앱을 사용할 때 염두에 두는 포인트에 이르기까지 설명합니다. 또한 플러그인 제한 및 장치 간 구성 동기화를 자세히 살펴 보겠습니다.

Chatgpt Chinese 버전 : 중국 AI 대화의 새로운 경험 잠금 해제 Chatgpt는 전 세계적으로 인기가 있습니다. 중국어 버전도 제공한다는 것을 알고 있습니까? 이 강력한 AI 도구는 일상적인 대화를 지원할뿐만 아니라 전문적인 콘텐츠를 처리하며 단순화되고 전통적인 중국어와 호환됩니다. 중국의 사용자이든 중국어를 배우는 친구이든 상관없이 혜택을 누릴 수 있습니다. 이 기사는 계정 설정, 중국 신속한 단어 입력, 필터 사용 및 다양한 패키지 선택을 포함하여 ChatGpt 중국어 버전을 사용하는 방법을 자세히 소개하고 잠재적 위험 및 응답 전략을 분석합니다. 또한 ChatGpt 중국어 버전을 다른 중국 AI 도구와 비교하여 장점과 응용 프로그램 시나리오를 더 잘 이해할 수 있도록 도와줍니다. Openai의 최신 AI 인텔리전스

이것들은 생성 AI 분야의 다음 도약으로 생각 될 수 있으며, 이는 우리에게 Chatgpt 및 기타 대규모 모델 챗봇을 제공했습니다. 단순히 질문에 대답하거나 정보를 생성하는 대신, 우리를 대신하여 조치를 취할 수 있습니다.

ChatGpt를 사용한 효율적인 다중 계정 관리 기술 | 비즈니스와 사생활 사용 방법에 대한 철저한 설명! Chatgpt는 다양한 상황에서 사용되지만 일부 사람들은 여러 계정 관리에 대해 걱정할 수 있습니다. 이 기사는 ChatGpt에 대한 여러 계정을 만드는 방법, 사용할 때 수행 할 작업 및 안전하고 효율적으로 작동하는 방법을 자세히 설명합니다. 또한 비즈니스와 개인 사용의 차이, OpenAI의 이용 약관을 준수하는 것과 같은 중요한 점을 다루며 여러 계정을 안전하게 활용하는 데 도움이되는 안내서를 제공합니다. Openai


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

Eclipse용 SAP NetWeaver 서버 어댑터
Eclipse를 SAP NetWeaver 애플리케이션 서버와 통합합니다.

SublimeText3 영어 버전
권장 사항: Win 버전, 코드 프롬프트 지원!

SecList
SecLists는 최고의 보안 테스터의 동반자입니다. 보안 평가 시 자주 사용되는 다양한 유형의 목록을 한 곳에 모아 놓은 것입니다. SecLists는 보안 테스터에게 필요할 수 있는 모든 목록을 편리하게 제공하여 보안 테스트를 더욱 효율적이고 생산적으로 만드는 데 도움이 됩니다. 목록 유형에는 사용자 이름, 비밀번호, URL, 퍼징 페이로드, 민감한 데이터 패턴, 웹 셸 등이 포함됩니다. 테스터는 이 저장소를 새로운 테스트 시스템으로 간단히 가져올 수 있으며 필요한 모든 유형의 목록에 액세스할 수 있습니다.

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

안전한 시험 브라우저
안전한 시험 브라우저는 온라인 시험을 안전하게 치르기 위한 보안 브라우저 환경입니다. 이 소프트웨어는 모든 컴퓨터를 안전한 워크스테이션으로 바꿔줍니다. 이는 모든 유틸리티에 대한 액세스를 제어하고 학생들이 승인되지 않은 리소스를 사용하는 것을 방지합니다.