arXiv 논문 "Unifying Voxel-based Representation with Transformer for 3D ObjectDetection", 6월 22일, 홍콩 중문 대학교, 홍콩 대학교, Megvii Technology(Sun Jian 박사를 기념하여) 및 Simou Technology 등
본 논문에서는 UVTR이라는 통합 다중 모드 3D 개체 감지 프레임워크를 제안합니다. 이 방법은 복셀 공간의 다중 모드 표현을 통합하고 정확하고 강력한 단일 모드 또는 교차 모드 3D 감지를 가능하게 하는 것을 목표로 합니다. 이를 위해 양식별 공간은 먼저 복셀 특징 공간에 대한 다양한 입력을 나타내도록 설계되었습니다. 높이 압축 없이 복셀 공간을 보존하고 의미적 모호성을 완화하며 공간 상호 작용을 가능하게 합니다. 이러한 통합 접근 방식을 기반으로 지식 전달 및 모드 융합을 포함하여 다양한 센서의 고유한 특성을 완전히 활용하기 위한 교차 모드 상호 작용이 제안됩니다. 이러한 방식으로 포인트 클라우드의 형상 인식 표현과 이미지의 상황에 맞는 특징을 잘 활용하여 성능과 견고성을 높일 수 있습니다.
변환기 디코더는 학습 가능한 위치가 있는 통합 공간에서 특징을 효율적으로 샘플링하는 데 사용되며, 이는 개체 수준 상호 작용을 용이하게 합니다. 일반적으로 UVTR은 통합 프레임워크에서 다양한 양식을 표현하려는 초기 시도를 나타내며 단일 및 다중 모드 입력에 대한 이전 작업을 능가하고 nuScenes 테스트 세트, LiDAR, 카메라 및 다중 모드 출력의 NDS에서 최고의 성능을 달성합니다. 각각 69.7%, 55.1%, 71.1%였다.
코드: https://github.com/dvlab-research/UVTR.
그림과 같이
표현 통일 과정에서 입력은 다음과 같습니다. 크게 레벨흐름 표현과 특성 레벨흐름 표현으로 구분됩니다. 첫 번째 접근 방식의 경우 다중 모드 데이터가 네트워크 시작 부분에 정렬됩니다. 특히, (a)의 의사 포인트 클라우드는 예측된 깊이 보조 이미지에서 변환되고, (b)의 거리 뷰 이미지는 포인트 클라우드에서 투영됩니다. 의사 점 구름의 깊이 부정확성과 범위 보기 이미지의 3차원 기하학적 붕괴로 인해 데이터의 공간 구조가 파괴되어 결과가 좋지 않습니다. 특징 수준 방법의 경우 일반적인 방법은 그림 (c)와 같이 이미지 특징을 절두체로 변환한 다음 이를 BEV 공간으로 압축하는 것입니다. 그러나 광선과 같은 궤적 때문에 각 위치의 높이 정보(높이) 압축은 다양한 대상의 특징을 집계하여 의미적 모호성을 유발합니다. 동시에, 암시적 접근 방식은 3D 공간에서 명시적인 기능 상호 작용을 지원하기 어렵고 추가 지식 전달을 제한합니다. 따라서 모달 격차를 해소하고 다면적인 상호 작용을 촉진하려면 보다 통일된 표현이 필요합니다.
이 글에서 제안하는 프레임워크는 복셀 기반 표현과 변환기를 통합합니다. 특히, 복셀 기반의 명시적 공간에서 이미지와 포인트 클라우드의 특징 표현 및 상호 작용. 이미지의 경우 그림 (d)에 표시된 대로 예측된 깊이와 기하학적 제약 조건에 따라 이미지 평면에서 특징을 샘플링하여 복셀 공간이 구성됩니다. 포인트 클라우드의 경우 정확한 위치를 통해 자연스럽게 기능을 복셀과 연결할 수 있습니다. 그런 다음 공간적 상호 작용을 위해 복셀 인코더가 도입되어 인접한 특징 간의 관계를 설정합니다. 이러한 방식으로 교차 모달 상호 작용은 각 복셀 공간의 기능과 자연스럽게 진행됩니다. 대상 수준 상호 작용의 경우 그림 (d)에 표시된 대로 변형 가능한 변환기가 디코더로 사용되어 통합 복셀 공간의 각 위치(x, y, z)에서 대상 쿼리 관련 기능을 샘플링합니다. 동시에, 3차원 쿼리 위치의 도입은 BEV 공간에서 높이 정보(높이) 압축으로 인해 발생하는 의미 모호성을 효과적으로 완화합니다.
그림에 표시된 것처럼 다중 모달 입력의 UVTR 아키텍처는 다음과 같습니다. 단일 프레임 또는 다중 프레임 이미지와 포인트 클라우드가 주어지면 먼저 단일 백본에서 처리되고 양식별 공간 VI 및 VP로 변환됩니다. 여기서 뷰 변환은 이미지로 이루어집니다. 복셀 인코더에서는 기능이 공간적으로 상호 작용하며 훈련 중에 지식 전달이 쉽게 지원됩니다. 설정에 따라 모달 스위치를 통해 단일 모드 또는 다중 모드 기능을 선택하십시오. 마지막으로 학습 가능한 위치가 있는 통합 공간 VU에서 특징을 샘플링하고 변환기 디코더를 사용하여 예측합니다.
그림은 뷰 변환의 세부 사항을 보여줍니다.
그림은 지식 이전의 세부 사항을 보여줍니다.
실험 결과는 다음과 같습니다.
위 내용은 Transformer는 3D 객체 감지를 위해 복셀 기반 표현을 통합합니다.의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

Apollo Research의 새로운 보고서에 따르면 고급 AI 시스템의 점검되지 않은 내부 배치는 상당한 위험을 초래합니다. 주요 AI 기업들 사이에서 널리 퍼져있는 이러한 감독 부족은 uncont에서 범위에 이르는 잠재적 인 치명적인 결과를 허용합니다.

전통적인 거짓말 탐지기는 구식입니다. 손목 대역으로 연결된 포인터에 의존하는 것은 대상의 활력 징후와 물리적 반응을 인쇄하는 거짓말 탐지기가 거짓말을 식별하는 데 정확하지 않습니다. 그렇기 때문에 거짓말 탐지 결과는 일반적으로 법원에서 채택되지는 않지만 많은 무고한 사람들이 감옥에 갇히게되었습니다. 대조적으로, 인공 지능은 강력한 데이터 엔진이며, 작동 원리는 모든 측면을 관찰하는 것입니다. 이것은 과학자들이 다양한 방식으로 진실을 찾는 응용 분야에 인공 지능을 적용 할 수 있음을 의미합니다. 한 가지 방법은 거짓말 탐지기처럼 심문을받는 사람의 중요한 부호 반응을 분석하지만보다 상세하고 정확한 비교 분석을 분석하는 것입니다. 또 다른 방법은 언어 마크 업을 사용하여 사람들이 실제로 말하는 것을 분석하고 논리와 추론을 사용하는 것입니다. 말이 갈 때, 한 거짓말은 또 다른 거짓말을 번식시키고 결국

혁신의 선구자 인 항공 우주 산업은 AI를 활용하여 가장 복잡한 도전을 해결하고 있습니다. Modern Aviation의 복잡성 증가는 AI의 자동화 및 실시간 인텔리전스 기능이 필요합니다.

로봇 공학의 빠른 발전은 우리에게 매혹적인 사례 연구를 가져 왔습니다. Noetix의 N2 로봇의 무게는 40 파운드가 넘고 키가 3 피트이며 백 플립을 할 수 있다고합니다. Unitree의 G1 로봇의 무게는 N2 크기의 약 2 배이며 키는 약 4 피트입니다. 경쟁에 참여하는 작은 휴머노이드 로봇도 많으며 팬이 앞으로 나아가는 로봇도 있습니다. 데이터 해석 하프 마라톤은 12,000 명 이상의 관중을 끌어 들였지만 21 명의 휴머노이드 로봇 만 참여했습니다. 정부는 참여 로봇이 경쟁 전에 "집중 훈련"을 수행했다고 지적했지만 모든 로봇이 전체 경쟁을 완료 한 것은 아닙니다. 챔피언 -Tiangong Ult Beijing Humanoid Robot Innovation Center가 개발했습니다.

인공 지능은 현재 형태로 진정으로 지능적이지 않습니다. 기존 데이터를 모방하고 정제하는 데 능숙합니다. 우리는 인공 지능을 만들지 않고 오히려 인공적인 추론을 만들고 있습니다.

보고서에 따르면 Google Photos Android 버전 7.26 코드에 업데이트 된 인터페이스가 숨겨져 있으며 사진을 볼 때마다 새로 감지 된 얼굴 썸네일 행이 화면 하단에 표시됩니다. 새로운 얼굴 썸네일에는 이름 태그가 없으므로 탐지 된 각 사람에 대한 자세한 정보를 보려면 개별적으로 클릭해야한다고 생각합니다. 현재이 기능은 Google 사진이 이미지에서 찾은 사람들 외에는 정보를 제공하지 않습니다. 이 기능은 아직 사용할 수 없으므로 Google이 어떻게 정확하게 사용할 것인지 모릅니다. Google은 썸네일을 사용하여 선택된 사람들의 더 많은 사진을 찾는 속도를 높이거나 편집 할 개인을 선택하는 것과 같은 다른 목적으로 사용될 수 있습니다. 기다렸다가 보자. 지금은

강화 결합은 인간의 피드백을 기반으로 조정하도록 모델을 가르치면서 AI 개발을 흔들었다. 감독 학습 기초가 보상 기반 업데이트와 혼합되어 더 안전하고 정확하며 진정으로 도움을줍니다.

과학자들은 C. el 그러나 중요한 질문이 발생합니다. 새로운 AI S와 함께 효과적으로 작동하도록 우리 자신의 신경망을 어떻게 조정합니까?


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

에디트플러스 중국어 크랙 버전
작은 크기, 구문 강조, 코드 프롬프트 기능을 지원하지 않음

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

Atom Editor Mac 버전 다운로드
가장 인기 있는 오픈 소스 편집기
