찾다
기술 주변기기일체 포함Microsoft는 원스톱으로 고성능 경량 모델을 얻기 위해 자동화된 신경망 훈련 가지치기 프레임워크 OTO를 제안합니다.

OTO는 ​​업계 최초의 자동화된 원스톱 사용자 친화적 다용도 신경망 훈련 및 구조 압축 프레임워크입니다.

인공지능 시대에는 신경망을 어떻게 배치하고 유지 관리할지가 제품화의 핵심 문제입니다. 모델 성능 손실을 최소화하면서 컴퓨팅 비용을 절감한다는 점을 고려하면 신경망 압축은 DNN 제품화의 핵심 중 하나가 되었습니다.

Microsoft는 원스톱으로 고성능 경량 모델을 얻기 위해 자동화된 신경망 훈련 가지치기 프레임워크 OTO를 제안합니다.

DNN 압축에는 일반적으로 가지치기, 지식 증류, 양자화의 세 가지 방법이 있습니다. 프루닝은 중복된 구조를 식별하여 제거하고 모델 성능을 최대한 유지하면서 DNN을 줄이는 것을 목표로 합니다. 이는 가장 다양하고 효과적인 압축 방법입니다. 일반적으로 세 가지 방법은 서로를 보완하고 함께 작동하여 최상의 압축 효과를 얻을 수 있습니다.

Microsoft는 원스톱으로 고성능 경량 모델을 얻기 위해 자동화된 신경망 훈련 가지치기 프레임워크 OTO를 제안합니다.

기존 가지치기 방법의 대부분은 특정 모델과 특정 작업만을 대상으로 하며 강력한 전문 도메인 지식이 필요하므로 일반적으로 AI 개발자는 이러한 방법을 자신의 시나리오에 적용하기 위해 많은 노력을 기울여야 합니다. 인적, 물적 비용이 많이 소모됩니다.

OTO 개요

기존 가지치기 방법의 문제점을 해결하고 AI 개발자에게 편의성을 제공하기 위해 Microsoft 팀에서는 Only-Train-Once OTO 프레임워크를 제안했습니다. OTO는 업계 최초의 자동화된 원스톱 사용자 친화적 범용 신경망 훈련 및 구조 압축 프레임워크입니다. 일련의 작업이 ICLR2023 및 NeurIPS2021에 게시되었습니다.

OTO를 사용하면 AI 엔지니어는 대상 신경망을 쉽게 훈련하고 원스톱으로 고성능 경량 모델을 얻을 수 있습니다. OTO는 엔지니어링 시간과 노력에 대한 개발자의 투자를 최소화하고, 기존 방법에서 일반적으로 요구되는 시간이 많이 소요되는 사전 교육 및 추가 모델 미세 조정이 필요하지 않습니다.

  • Paper 링크 : :Otov2 ICLR 2023 : https://openreview.net/pdf?id=7ynox1ojpmt
  • otov1 Neurips 2021 : https://proceedings.neurips.cc/paper_files/2021/file/a376033f78e144f499 4bfc743c0be3330 -Paper.pdf
  • 코드 링크:
  • ​https://github.com/tianyic/only_train_once

  • 프레임워크 핵심 알고리즘

이상적인 구조 가지치기 알고리즘은 다음과 같아야 합니다: 일반 신경망용, 자동화된 원스톱 쉽게 훈련 이후의 미세 조정이 필요 없이 처음부터 고성능 경량 모델을 달성합니다. 그러나 신경망의 복잡성으로 인해 이 목표를 달성하는 것은 매우 어렵습니다. 이 궁극적인 목표를 달성하려면 다음 세 가지 핵심 질문을 체계적으로 해결해야 합니다.

제거할 수 있는 네트워크 구조를 찾는 방법은 무엇입니까?
  • 모델 성능을 최대한 잃지 않으면서 네트워크 구조를 제거하는 방법은 무엇입니까?
  • 위의 두 가지 사항을 어떻게 자동으로 달성할 수 있나요?
  • Microsoft 팀은 세 가지 핵심 알고리즘 세트를 설계하고 구현하여 이 세 가지 핵심 문제를 체계적이고 종합적으로 해결했습니다.

자동화된 무불변 그룹

네트워크 구조의 복잡성과 상관 관계로 인해 네트워크 구조를 삭제하면 나머지 네트워크 구조가 유효하지 않게 될 수 있습니다. 따라서 자동화된 네트워크 구조 압축의 가장 큰 문제 중 하나는 나머지 네트워크가 여전히 유효하도록 함께 정리해야 하는 모델 매개변수를 찾는 방법입니다. 이 문제를 해결하기 위해 Microsoft 팀은 OTOv1에서 ZIG(Zero-Invariant Group)를 제안했습니다. 영불변 그룹은 제거 가능한 가장 작은 단위의 유형으로 이해될 수 있으므로 그룹의 해당 네트워크 구조가 제거된 후에도 나머지 네트워크는 여전히 유효합니다. 영불변 그룹의 또 다른 큰 특성은 영불변 그룹이 0과 같으면 입력 값이 무엇이든 출력 값은 항상 0이라는 것입니다. OTOv2에서 연구원들은 일반 네트워크에서 제로 불변 그룹의 그룹화 문제를 해결하기 위해 일련의 자동화된 알고리즘을 제안하고 구현했습니다. 자동화된 그룹화 알고리즘은 일련의 그래프 알고리즘을 신중하게 조합한 것입니다. 전체 알고리즘은 매우 효율적이며 선형적인 시간 및 공간 복잡성을 갖습니다.

Microsoft는 원스톱으로 고성능 경량 모델을 얻기 위해 자동화된 신경망 훈련 가지치기 프레임워크 OTO를 제안합니다.

Dual Half Plane Projected Gradient Optimization Algorithm(DHSPG)

대상 네트워크의 모든 영불변 그룹을 나눈 후 다음 모델 훈련 및 가지치기 작업에서는 어떤 영불변 그룹이 중복되는지 알아내야 합니다. . 나머지는 중요한 것입니다. 압축 모델의 성능을 보장하려면 중복된 제로 불변 그룹에 해당하는 네트워크 구조를 삭제하고 중요한 제로 불변 그룹을 유지해야 합니다. 연구진은 이 문제를 구조적 희소화 문제로 공식화하고, 이를 해결하기 위한 새로운 DHSPG(Dual Half-Space Projected Gradient) 최적화 알고리즘을 제안했습니다.

Microsoft는 원스톱으로 고성능 경량 모델을 얻기 위해 자동화된 신경망 훈련 가지치기 프레임워크 OTO를 제안합니다.

DHSPG는 중복된 제로 불변 그룹을 매우 효과적으로 찾아 이를 0으로 투영할 수 있으며, 중요한 제로 불변 그룹을 지속적으로 훈련하여 원래 모델과 비슷한 성능을 달성할 수 있습니다.

기존 희소 최적화 알고리즘과 비교하여 DHSPG는 더 강력하고 안정적인 희소 구조 탐색 기능을 갖추고 훈련 검색 공간을 확장하므로 일반적으로 더 높은 실제 성능 결과를 달성합니다.

Microsoft는 원스톱으로 고성능 경량 모델을 얻기 위해 자동화된 신경망 훈련 가지치기 프레임워크 OTO를 제안합니다.

경량 압축 모델을 자동으로 구축

DHSPG를 사용하여 모델을 학습하면 영불변 그룹의 높은 구조적 희소성을 준수하는 솔루션을 얻을 수 있습니다. 즉, 솔루션에 많은 것이 있습니다. 이는 0의 0 불변 그룹으로 투영되며 이 솔루션은 또한 높은 모델 성능을 갖습니다. 다음으로, 연구진은 중복된 제로 불변 그룹에 해당하는 모든 구조를 삭제하여 자동으로 압축 네트워크를 구축했습니다. 영불변 그룹의 특성으로 인해, 즉 영불변 그룹이 0이면 입력 값이 무엇이든 출력 값은 항상 0이 되므로 중복된 영불변 그룹을 삭제하면 네트워크에 영향을 미칠 수 있습니다. 따라서 OTO를 통해 얻은 압축 네트워크는 기존 방법에서 요구되는 추가 모델 미세 조정이 필요 없이 전체 네트워크와 동일한 출력을 갖게 됩니다.

수많은 실험 CIFAR10의 VGG16 및 VGG16-BN 모델과 CIFAR10의 VGG16-BN 모델에서 볼륨이 97.5% 감소했으며 성능이 인상적이었습니다.

Microsoft는 원스톱으로 고성능 경량 모델을 얻기 위해 자동화된 신경망 훈련 가지치기 프레임워크 OTO를 제안합니다.표 2: CIFAR10에 대한 ResNet50 실험

CIFAR10에 대한 ResNet50 실험에서 OTO는 단 7.8%의 FLOP와 4.1%의 매개변수를 사용하여 양자화 없이 SOTA 신경망 압축 프레임워크 AMC 및 ANNC보다 성능이 뛰어났습니다.

Microsoft는 원스톱으로 고성능 경량 모델을 얻기 위해 자동화된 신경망 훈련 가지치기 프레임워크 OTO를 제안합니다.표 3. ImageNet의 ResNet50 실험

ImageNet의 ResNet50 실험에서 OTOv2는 다양한 구조적 희소화 목표 하에서 기존 SOTA 방법과 비슷하거나 훨씬 더 나은 성능을 보여주었습니다.

Microsoft는 원스톱으로 고성능 경량 모델을 얻기 위해 자동화된 신경망 훈련 가지치기 프레임워크 OTO를 제안합니다.표 4: 추가 구조 및 데이터 세트

OTO는 ​​또한 더 많은 데이터 세트 및 모델 구조에서 좋은 성능을 달성합니다.

저수준 비전 작업

Microsoft는 원스톱으로 고성능 경량 모델을 얻기 위해 자동화된 신경망 훈련 가지치기 프레임워크 OTO를 제안합니다.

표 4: CARNx2 실험

초해상도 작업에서 OTO 원스톱 훈련은 CARNx2 네트워크를 압축하여 원래 모델과 경쟁력 있는 결과를 얻었습니다. 성능을 향상시키고 계산 작업량과 모델 크기를 75% 이상 압축했습니다.

언어 모델 작업

Microsoft는 원스톱으로 고성능 경량 모델을 얻기 위해 자동화된 신경망 훈련 가지치기 프레임워크 OTO를 제안합니다.

또한 연구진은 핵심 알고리즘 중 하나인 DHSPG 최적화 알고리즘에 대해 Bert에 대한 비교 실험을 진행하여 다른 희소 최적화 알고리즘에 비해 높은 성능을 검증했습니다. Squad에서는 훈련에 DHSPG를 사용하여 얻은 매개변수 감소 및 모델 성능이 다른 희소 최적화 알고리즘보다 훨씬 우수하다는 것을 알 수 있습니다.

결론

Microsoft 팀은 OTO(Only-Train-Once)라는 자동화된 원스톱 신경망 훈련 구조 가지치기 프레임워크를 제안했습니다. 고성능을 유지하면서 전체 신경망을 경량 네트워크로 자동 압축할 수 있습니다. OTO는 기존 구조 가지치기 방법의 복잡한 다단계 프로세스를 크게 단순화하고 다양한 네트워크 아키텍처 및 애플리케이션에 적합하며 사용자의 추가 엔지니어링 투자를 최소화합니다. 다용도이고 효과적이며 사용하기 쉽습니다.

위 내용은 Microsoft는 원스톱으로 고성능 경량 모델을 얻기 위해 자동화된 신경망 훈련 가지치기 프레임워크 OTO를 제안합니다.의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

성명
이 기사는 51CTO.COM에서 복제됩니다. 침해가 있는 경우 admin@php.cn으로 문의하시기 바랍니다. 삭제
가장 많이 사용되는 10 개의 Power BI 차트 -Axaltics Vidhya가장 많이 사용되는 10 개의 Power BI 차트 -Axaltics VidhyaApr 16, 2025 pm 12:05 PM

Microsoft Power BI 차트로 데이터 시각화의 힘을 활용 오늘날의 데이터 중심 세계에서는 복잡한 정보를 비 기술적 인 청중에게 효과적으로 전달하는 것이 중요합니다. 데이터 시각화는이 차이를 연결하여 원시 데이터를 변환합니다. i

AI의 전문가 시스템AI의 전문가 시스템Apr 16, 2025 pm 12:00 PM

전문가 시스템 : AI의 의사 결정 능력에 대한 깊은 다이빙 의료 진단에서 재무 계획에 이르기까지 모든 것에 대한 전문가의 조언에 접근 할 수 있다고 상상해보십시오. 그것이 인공 지능 분야의 전문가 시스템의 힘입니다. 이 시스템은 프로를 모방합니다

최고의 바이브 코더 3 명이 코드 에서이 AI 혁명을 분해합니다.최고의 바이브 코더 3 명이 코드 에서이 AI 혁명을 분해합니다.Apr 16, 2025 am 11:58 AM

우선, 이것이 빠르게 일어나고 있음이 분명합니다. 다양한 회사들이 현재 AI가 작성한 코드의 비율에 대해 이야기하고 있으며 빠른 클립에서 증가하고 있습니다. 이미 주변에 많은 작업 변위가 있습니다

활주로 AI의 GEN-4 : AI Montage는 어떻게 부조리를 넘어갈 수 있습니까?활주로 AI의 GEN-4 : AI Montage는 어떻게 부조리를 넘어갈 수 있습니까?Apr 16, 2025 am 11:45 AM

디지털 마케팅에서 소셜 미디어에 이르기까지 모든 창의적 부문과 함께 영화 산업은 기술 교차로에 있습니다. 인공 지능이 시각적 스토리 텔링의 모든 측면을 재구성하고 엔터테인먼트의 풍경을 바꾸기 시작함에 따라

ISRO AI 무료 코스 5 일 동안 등록하는 방법은 무엇입니까? - 분석 VidhyaISRO AI 무료 코스 5 일 동안 등록하는 방법은 무엇입니까? - 분석 VidhyaApr 16, 2025 am 11:43 AM

ISRO의 무료 AI/ML 온라인 코스 : 지리 공간 기술 혁신의 관문 IIRS (Indian Institute of Remote Sensing)를 통해 Indian Space Research Organization (ISRO)은 학생과 전문가에게 환상적인 기회를 제공하고 있습니다.

AI의 로컬 검색 알고리즘AI의 로컬 검색 알고리즘Apr 16, 2025 am 11:40 AM

로컬 검색 알고리즘 : 포괄적 인 가이드 대규모 이벤트를 계획하려면 효율적인 작업량 배포가 필요합니다. 전통적인 접근 방식이 실패하면 로컬 검색 알고리즘은 강력한 솔루션을 제공합니다. 이 기사는 언덕 등반과 Simul을 탐구합니다

Openai는 GPT-4.1로 초점을 이동하고 코딩 및 비용 효율성을 우선시합니다.Openai는 GPT-4.1로 초점을 이동하고 코딩 및 비용 효율성을 우선시합니다.Apr 16, 2025 am 11:37 AM

릴리스에는 GPT-4.1, GPT-4.1 MINI 및 GPT-4.1 NANO의 세 가지 모델이 포함되어 있으며, 대형 언어 모델 환경 내에서 작업 별 최적화로 이동합니다. 이 모델은 사용자를 향한 인터페이스를 즉시 대체하지 않습니다

프롬프트 : Chatgpt는 가짜 여권을 생성합니다프롬프트 : Chatgpt는 가짜 여권을 생성합니다Apr 16, 2025 am 11:35 AM

Chip Giant Nvidia는 월요일에 AI SuperComputers를 제조하기 시작할 것이라고 말했다. 이 발표는 트럼프 SI 대통령 이후에 나온다

See all articles

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

AI Hentai Generator

AI Hentai Generator

AI Hentai를 무료로 생성하십시오.

인기 기사

R.E.P.O. 에너지 결정과 그들이하는 일 (노란색 크리스탈)
1 몇 달 전By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. 최고의 그래픽 설정
1 몇 달 전By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. 아무도들을 수없는 경우 오디오를 수정하는 방법
1 몇 달 전By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. 채팅 명령 및 사용 방법
1 몇 달 전By尊渡假赌尊渡假赌尊渡假赌

뜨거운 도구

스튜디오 13.0.1 보내기

스튜디오 13.0.1 보내기

강력한 PHP 통합 개발 환경

SublimeText3 Linux 새 버전

SublimeText3 Linux 새 버전

SublimeText3 Linux 최신 버전

Atom Editor Mac 버전 다운로드

Atom Editor Mac 버전 다운로드

가장 인기 있는 오픈 소스 편집기

SublimeText3 Mac 버전

SublimeText3 Mac 버전

신 수준의 코드 편집 소프트웨어(SublimeText3)

VSCode Windows 64비트 다운로드

VSCode Windows 64비트 다운로드

Microsoft에서 출시한 강력한 무료 IDE 편집기