AI 시스템은 인공지능(AI) 기술을 활용해 복잡한 작업을 수행하는 시스템입니다. AI를 신속하게 훈련하고 배포하려면 이를 지원하는 빠르고 안정적이며 안전한 네트워크 인프라가 필요합니다. 복잡성, 비효율성, 비용, 비유연성 및 기타 단점으로 인해 기존의 광역 네트워크(WAN)는 AI의 네트워크 요구 사항을 충족할 수 없었습니다. 따라서 신흥 엔터프라이즈 네트워킹 솔루션인 소프트웨어 정의 광역 네트워크(SD-WAN)가 특히 중요합니다.
인공 지능(AI)은 오늘날 가장 혁신적이고 유망한 기술 중 하나이며, 모든 계층에 엄청난 가치와 효율성을 가져올 수 있습니다. AI 시스템은 인공지능(AI) 기술을 활용해 음성인식, 영상분석, 자율주행 등 복잡한 작업을 수행하는 시스템이다. AI를 신속하게 훈련하고 배포하려면 이를 지원하는 빠르고 안정적이며 안전한 네트워크 인프라가 필요합니다. 복잡성, 비효율성, 비용, 비유연성 및 기타 단점으로 인해 기존의 광역 네트워크(WAN)는 AI의 네트워크 요구 사항을 충족할 수 없었습니다. 따라서 신흥 엔터프라이즈 네트워킹 솔루션인 소프트웨어 정의 광역 네트워크(SD-WAN)가 특히 중요합니다.
SD-WAN은 데이터 패킷을 전송하는 최적의 경로를 동적으로 선택하여 네트워크 성능과 안정성을 향상시키는 네트워크 기술입니다. SD-WAN은 실시간 네트워크 상태 및 애플리케이션 요구 사항을 기반으로 가장 적절한 전송 방법을 자동으로 선택할 수 있기 때문에 AI 시스템에 더 빠르고 안정적이며 안전하고 유연하며 효율적인 네트워크 연결을 제공할 수 있습니다. 예를 들어, AI 시스템에 클라우드의 대량 데이터와 컴퓨팅 리소스가 필요한 경우 SD-WAN은 기존 데이터 센터를 거치지 않고 트래픽을 클라우드 서비스 제공업체에 직접 전달할 수 있습니다. 이를 통해 대기 시간과 혼잡이 줄어들고 사용자 경험과 효율성이 향상됩니다.
SD-WAN은 AI 시스템이 필요한 클라우드 컴퓨팅 및 엣지 컴퓨팅 지원을 받도록 도울 수 있습니다. 이러한 기술을 통해 AI 시스템은 다양한 위치에서 다양한 작업을 수행하여 분산 지능을 달성할 수 있습니다. 예를 들어 자율주행 시스템은 차량에서 실시간 인식 및 의사결정 작업을 수행하고, 엣지 디바이스에서 조정 및 제어 작업을 수행하며, 클라우드에서 학습 및 최적화 작업을 수행할 수 있습니다. SD-WAN은 각 작업의 특성에 따라 가장 가깝거나 가장 적합한 클라우드 또는 엣지 노드에 트래픽을 분산시킬 수 있습니다. 이를 통해 비용과 에너지 소비가 줄어들고 확장성과 보안이 향상됩니다.
SD-WAN을 통해 AI 시스템 성능을 강화하고 개선하면 다음과 같은 주요 이점이 있습니다.
• 사용자 경험 및 효율성 향상: SD-WAN을 사용하면 AI 시스템이 필요한 데이터와 컴퓨팅 리소스를 신속하게 얻을 수 있으므로 지연 시간이 단축되고 혼잡을 완화하여 응답 속도와 정확성을 향상시킵니다.
• 비용 및 에너지 소비 절감: SD-WAN을 통해 AI 시스템은 가장 경제적이거나 가장 가까운 클라우드 또는 엣지 노드를 활용하여 작업을 수행함으로써 대역폭과 장비 비용을 절약하고 에너지 소비를 줄일 수 있습니다.
• 향상된 확장성 및 보안: SD-WAN을 사용하면 AI 시스템이 다양한 규모나 시나리오의 수요 변화에 쉽게 적응할 수 있으며 SASE의 보호를 통해 데이터 유출이나 시스템 손상을 방지할 수 있습니다.
몇 가지 실제 사례를 들어보겠습니다.
• 음성 인식 및 자연어 처리 기술을 사용하는 AI 시스템은 클라우드에서 대량의 음성 및 텍스트 데이터를 가져와 분석하고 처리해야 합니다. SD-WAN은 데이터 패킷의 내용과 우선순위를 기반으로 최적의 네트워크 경로와 대역폭을 선택할 수 있으므로 지연 시간과 패킷 손실이 줄어들고 음성 인식 및 자연어 처리의 정확성과 효율성이 향상됩니다.
• 이미지 분석과 머신러닝 기술을 사용하는 AI 시스템은 에지 노드에서 실시간 이미지 처리 작업을 수행하고 저장 또는 추가 분석을 위해 결과를 클라우드로 보내야 합니다. SD-WAN은 엣지 노드의 위치와 성능을 기반으로 가장 가깝거나 가장 강한 네트워크 연결을 선택할 수 있으므로 네트워크 오버헤드와 에너지 소비를 줄이고 이미지 분석 및 기계 학습의 속도와 품질을 향상시킬 수 있습니다.
• 자율주행 기술을 활용한 AI 시스템은 차량 내부에서 복잡한 내비게이션 및 제어 작업을 수행하고 외부 환경과 상호작용해야 합니다. SD-WAN은 차량의 주행 상태와 주변 조건을 기반으로 가장 신뢰할 수 있거나 안전한 네트워크 연결을 선택할 수 있어 위험과 간섭을 줄이고 자율 주행 기술의 안전성과 신뢰성을 향상시킬 수 있습니다.
요약하자면, SD-WAN 기술의 강화로 다양한 시나리오에서의 AI 경험이 더욱 원활해질 것입니다. 그렇다면 데이터 액세스 및 전송의 보안을 어떻게 보장할 수 있을까요?
SASE는 Secure Access Service Edge의 약자로 SD-WAN과 클라우드 보안 서비스를 통합한 네트워크 아키텍처입니다. SASE는 사용자, 장치, 애플리케이션 및 데이터의 ID와 컨텍스트를 기반으로 가장 적절한 보안 정책과 제어를 동적으로 제공하므로 SD-WAN 및 AI 시스템을 보호합니다. 예를 들어 AI 시스템이 민감한 클라우드 데이터베이스에 액세스해야 하는 경우 SASE는 트래픽을 암호화, 인증, 승인 및 감사하여 데이터 유출이나 변조를 방지할 수 있습니다. AI 시스템에서 네트워크 공격이나 비정상적인 동작이 발생하는 경우 SASE는 트래픽을 감지, 격리, 대응 및 복구하여 시스템 충돌이나 손상을 방지할 수 있습니다.
요즘 많은 기업에서 SASE를 사용하여 네트워크 및 보안 기능을 향상시키기 시작했습니다. 예를 들어 Lingrui Lanxin의 SASE(차세대 데이터 보안) 액세스 플랫폼은 SD-WAN 네트워크 기술과 네트워크 보안 기술을 정교하게 통합하여 SD-WAN + SD-Security 아키텍처를 기반으로 하는 새로운 솔루션을 구성하고 네트워크 및 보안 기능을 모듈화합니다. 동적 라우팅, 멀티링크 통합, 로드 밸런싱, UDP/TCP 최적화 등과 같은 SD-WAN 네트워크 기능에 ZTNA 제로 트러스트 액세스, DDOS 보호, 악성 코드 보호, NGFW 방화벽, DNS 보호 및 기타 기능을 통합합니다. 보안 기능은 여러 시나리오에서 고객의 보안 액세스 요구 사항을 충족하기 위해 컨트롤러를 통해 조정, 제어 및 예약됩니다. 기본 데이터 전송은 데이터 전송 보안을 보장할 뿐만 아니라 이를 향상시키는 SecHX 독립적으로 제어 가능한 보안 캡슐화 프로토콜을 채택합니다. 데이터 전송의 효율성을 향상시킵니다.
Gartner의 예측에 따르면 2024년까지 최소 40%의 기업이 디지털 혁신을 지원하기 위해 SASE 아키텍처 모델을 채택할 것입니다. 이는 SASE가 미래 네트워크 및 보안 개발의 중요한 추세 중 하나임을 보여줍니다.
요약하자면, 성숙한 엔터프라이즈 네트워킹 솔루션인 SD-WAN은 AI 네트워크 성능과 보안을 향상시키는 데 상당한 이점을 가지고 있습니다. 앞으로는 SD-WAN과 AI 기술이 더욱 발전하고 통합되면서 클라우드 컴퓨팅, 엣지 컴퓨팅 등 분야에서 더 많은 혁신과 가치가 창출될 것입니다.
위 내용은 SD-WAN은 AI 시스템 성능 향상에 도움이 됩니다.의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

机器学习是一个不断发展的学科,一直在创造新的想法和技术。本文罗列了2023年机器学习的十大概念和技术。 本文罗列了2023年机器学习的十大概念和技术。2023年机器学习的十大概念和技术是一个教计算机从数据中学习的过程,无需明确的编程。机器学习是一个不断发展的学科,一直在创造新的想法和技术。为了保持领先,数据科学家应该关注其中一些网站,以跟上最新的发展。这将有助于了解机器学习中的技术如何在实践中使用,并为自己的业务或工作领域中的可能应用提供想法。2023年机器学习的十大概念和技术:1. 深度神经网

实现自我完善的过程是“机器学习”。机器学习是人工智能核心,是使计算机具有智能的根本途径;它使计算机能模拟人的学习行为,自动地通过学习来获取知识和技能,不断改善性能,实现自我完善。机器学习主要研究三方面问题:1、学习机理,人类获取知识、技能和抽象概念的天赋能力;2、学习方法,对生物学习机理进行简化的基础上,用计算的方法进行再现;3、学习系统,能够在一定程度上实现机器学习的系统。

本文将详细介绍用来提高机器学习效果的最常见的超参数优化方法。 译者 | 朱先忠审校 | 孙淑娟简介通常,在尝试改进机器学习模型时,人们首先想到的解决方案是添加更多的训练数据。额外的数据通常是有帮助(在某些情况下除外)的,但生成高质量的数据可能非常昂贵。通过使用现有数据获得最佳模型性能,超参数优化可以节省我们的时间和资源。顾名思义,超参数优化是为机器学习模型确定最佳超参数组合以满足优化函数(即,给定研究中的数据集,最大化模型的性能)的过程。换句话说,每个模型都会提供多个有关选项的调整“按钮

截至3月20日的数据显示,自微软2月7日推出其人工智能版本以来,必应搜索引擎的页面访问量增加了15.8%,而Alphabet旗下的谷歌搜索引擎则下降了近1%。 3月23日消息,外媒报道称,分析公司Similarweb的数据显示,在整合了OpenAI的技术后,微软旗下的必应在页面访问量方面实现了更多的增长。截至3月20日的数据显示,自微软2月7日推出其人工智能版本以来,必应搜索引擎的页面访问量增加了15.8%,而Alphabet旗下的谷歌搜索引擎则下降了近1%。这些数据是微软在与谷歌争夺生

荣耀的人工智能助手叫“YOYO”,也即悠悠;YOYO除了能够实现语音操控等基本功能之外,还拥有智慧视觉、智慧识屏、情景智能、智慧搜索等功能,可以在系统设置页面中的智慧助手里进行相关的设置。

人工智能在教育领域的应用主要有个性化学习、虚拟导师、教育机器人和场景式教育。人工智能在教育领域的应用目前还处于早期探索阶段,但是潜力却是巨大的。

阅读论文可以说是我们的日常工作之一,论文的数量太多,我们如何快速阅读归纳呢?自从ChatGPT出现以后,有很多阅读论文的服务可以使用。其实使用ChatGPT API非常简单,我们只用30行python代码就可以在本地搭建一个自己的应用。 阅读论文可以说是我们的日常工作之一,论文的数量太多,我们如何快速阅读归纳呢?自从ChatGPT出现以后,有很多阅读论文的服务可以使用。其实使用ChatGPT API非常简单,我们只用30行python代码就可以在本地搭建一个自己的应用。使用 Python 和 C

人工智能在生活中的应用有:1、虚拟个人助理,使用者可通过声控、文字输入的方式,来完成一些日常生活的小事;2、语音评测,利用云计算技术,将自动口语评测服务放在云端,并开放API接口供客户远程使用;3、无人汽车,主要依靠车内的以计算机系统为主的智能驾驶仪来实现无人驾驶的目标;4、天气预测,通过手机GPRS系统,定位到用户所处的位置,在利用算法,对覆盖全国的雷达图进行数据分析并预测。


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

안전한 시험 브라우저
안전한 시험 브라우저는 온라인 시험을 안전하게 치르기 위한 보안 브라우저 환경입니다. 이 소프트웨어는 모든 컴퓨터를 안전한 워크스테이션으로 바꿔줍니다. 이는 모든 유틸리티에 대한 액세스를 제어하고 학생들이 승인되지 않은 리소스를 사용하는 것을 방지합니다.

SublimeText3 Linux 새 버전
SublimeText3 Linux 최신 버전

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)
