网上有不少mysql 性能优化方案,不过,mysql的优化同sql server相比,更为麻烦,同样的设置,在不同的环境下 ,由于内存,访问量,读写频率,数据差异等等情况,可能会出现不同的结果,因此简单地根据某个给出方案来配置mysql是行不通的,最好能使用status信息对mysql进行具体的优化。
mysql> show global status;
可以列出MySQL服务器运行各种状态值,另外,查询MySQL服务器配置信息语句:
mysql> show variables;
一、慢查询
mysql> show variables like ‘%slow%‘; +——————+——-+ | Variable_name | Value | +——————+——-+ | log_slow_queries | ON | | slow_launch_time | 2 | +——————+——-+ mysql> show global status like ‘%slow%‘; +———————+——-+ | Variable_name | Value | +———————+——-+ | Slow_launch_threads | 0 | | Slow_queries | 4148 | +———————+——-+
配置中打开了记录慢查询,执行时间超过2秒的即为慢查询,系统显示有4148个慢查询,你可以分析慢查询日志,找出有问题的SQL语句,慢查询时间不宜设置过长,否则意义不大,最好在5秒以内,如果你需要微秒级别的慢查询,可以考虑给MySQL打补丁:http://www.percona.com/docs/wiki/release:start,记得找对应的版本。
打开慢查询日志可能会对系统性能有一点点影响,如果你的MySQL是主-从结构,可以考虑打开其中一台从服务器的慢查询日志,这样既可以监控慢查询,对系统性能影响又小。
二、连接数
经常会遇见”MySQL: ERROR 1040: Too many connections”的情况,一种是访问量确实很高,MySQL服务器抗不住,这个时候就要考虑增加从服务器分散读压力,另外一种情况是MySQL配置文件中max_connections值过小:
mysql> show variables like ‘max_connections‘; +—————–+——-+ | Variable_name | Value | +—————–+——-+ | max_connections | 256 | +—————–+——-+
这台MySQL服务器最大连接数是256,然后查询一下服务器响应的最大连接数:
mysql> show global status like ‘Max_used_connections‘;
MySQL服务器过去的最大连接数是245,没有达到服务器连接数上限256,应该没有出现1040错误,比较理想的设置是
Max_used_connections / max_connections * 100% ≈ 85%
最大连接数占上限连接数的85%左右,如果发现比例在10%以下,MySQL服务器连接数上限设置的过高了。
三、Key_buffer_size
key_buffer_size是对MyISAM表性能影响最大的一个参数,下面一台以MyISAM为主要存储引擎服务器的配置:
mysql> show variables like ‘key_buffer_size‘;+—————–+————+ | Variable_name | Value | +—————–+————+ | key_buffer_size | 536870912 | +—————–+————+
分配了512MB内存给key_buffer_size,我们再看一下key_buffer_size的使用情况:
mysql> show global status like ‘key_read%‘; +————————+————-+ | Variable_name | Value | +————————+————-+ | Key_read_requests | 27813678764 | | Key_reads | 6798830 | +————————+————-+
一共有27813678764个索引读取请求,有6798830个请求在内存中没有找到直接从硬盘读取索引,计算索引未命中缓存的概率:
key_cache_miss_rate = Key_reads / Key_read_requests * 100%
比如上面的数据,key_cache_miss_rate为0.0244%,4000个索引读取请求才有一个直接读硬盘,已经很BT了,key_cache_miss_rate在0.1%以下都很好(每1000个请求有一个直接读硬盘),如果key_cache_miss_rate在0.01%以下的话,key_buffer_size分配的过多,可以适当减少。
MySQL服务器还提供了key_blocks_*参数:
mysql> show global status like ‘key_blocks_u%‘; +————————+————-+ | Variable_name | Value | +————————+————-+ | Key_blocks_unused | 0 | | Key_blocks_used | 413543 | +————————+————-+
Key_blocks_unused表示未使用的缓存簇(blocks)数,Key_blocks_used表示曾经用到的最大的blocks数,比如这台服务器,所有的缓存都用到了,要么增加key_buffer_size,要么就是过渡索引了,把缓存占满了。比较理想的设置:
Key_blocks_used / (Key_blocks_unused + Key_blocks_used) * 100% ≈ 80%
四、临时表
mysql> show global status like ‘created_tmp%‘; +————————-+———+ | Variable_name | Value | +————————-+———+ | Created_tmp_disk_tables | 21197 | | Created_tmp_files | 58 | | Created_tmp_tables | 1771587 | +————————-+———+
每次创建临时表,Created_tmp_tables增加,如果是在磁盘上创建临时表,Created_tmp_disk_tables也增加,Created_tmp_files表示MySQL服务创建的临时文件文件数,比较理想的配置是:
Created_tmp_disk_tables / Created_tmp_tables * 100% bec12deab61fe4f8e861c0f89af05080= 85%
Open_tables / table_cache * 100% 8db4d95647a01ccb12a549bd851a66ca 50的话说明query_cache_size可能有点小,要不就是碎片太多。
查询缓存命中率 = (Qcache_hits – Qcache_inserts) / Qcache_hits * 100%
示例服务器 查询缓存碎片率 = 20.46%,查询缓存利用率 = 62.26%,查询缓存命中率 = 1.94%,命中率很差,可能写操作比较频繁吧,而且可能有些碎片。
八、排序使用情况
mysql> show global status like ‘sort%‘; +——————-+————+ | Variable_name | Value | +——————-+————+ | Sort_merge_passes | 29 | | Sort_range | 37432840 | | Sort_rows | 9178691532 | | Sort_scan | 1860569 | +——————-+————+
Sort_merge_passes 包括两步。MySQL 首先会尝试在内存中做排序,使用的内存大小由系统变量 Sort_buffer_size 决定,如果它的大小不够把所有的记录都读到内存中,MySQL 就会把每次在内存中排序的结果存到临时文件中,等 MySQL 找到所有记录之后,再把临时文件中的记录做一次排序。这再次排序就会增加 Sort_merge_passes。实际上,MySQL 会用另一个临时文件来存再次排序的结果,所以通常会看到 Sort_merge_passes 增加的数值是建临时文件数的两倍。因为用到了临时文件,所以速度可能会比较慢,增加 Sort_buffer_size 会减少 Sort_merge_passes 和 创建临时文件的次数。但盲目的增加 Sort_buffer_size 并不一定能提高速度,见 How fast can you sort data with MySQL?(另外,增加read_rnd_buffer_size(3.2.3是record_rnd_buffer_size)的值对排序的操作也有一点的好处
九、文件打开数(open_files)
mysql> show global status like ‘open_files‘; +—————+——-+ | Variable_name | Value | +—————+——-+ | Open_files | 1410 | +—————+——-+ mysql> show variables like ‘open_files_limit‘; +——————+——-+ | Variable_name | Value | +——————+——-+ | open_files_limit | 4590 | +——————+——-+
比较合适的设置:Open_files / open_files_limit * 100% 573cee2fcf2af804635afcde34353e8e 5000,最好采用InnoDB引擎,因为InnoDB是行锁而MyISAM是表锁,对于高并发写入的应用InnoDB效果会好些。示例中的服务器Table_locks_immediate / Table_locks_waited = 235,MyISAM就足够了。
十一、表扫描情况
mysql> show global status like ‘handler_read%‘; +———————–+————-+ | Variable_name | Value | +———————–+————-+ | Handler_read_first | 5803750 | | Handler_read_key | 6049319850 | | Handler_read_next | 94440908210 | | Handler_read_prev | 34822001724 | | Handler_read_rnd | 405482605 | | Handler_read_rnd_next | 18912877839 | +———————–+————-+
调出服务器完成的查询请求次数:
mysql> show global status like ‘com_select‘; +—————+———–+ | Variable_name | Value | +—————+———–+ | Com_select | 222693559 | +—————+———–+
计算表扫描率:
表扫描率 = Handler_read_rnd_next / Com_select
如果表扫描率超过4000,说明进行了太多表扫描,很有可能索引没有建好,增加read_buffer_size值会有一些好处,但最好不要超过8MB。
以上就是Mysql性能优化方案分享_MySQL的内容,更多相关内容请关注PHP中文网(www.php.cn)!