찾다
백엔드 개발파이썬 튜토리얼Python에서 매개변수를 구문 분석하는 세 가지 방법에 대한 자세한 설명

이 기사에서는 Python에 대한 관련 지식을 제공합니다. 첫 번째 옵션은 명령 구문 분석에 특별히 사용되는 인기 있는 Python 모듈인 argparse를 사용하는 것입니다. 모든 하이퍼파라미터를 배치할 수 있는 JSON 파일을 읽습니다. 세 번째이자 덜 알려진 방법은 YAML 파일을 사용하는 것입니다. 살펴보겠습니다. 모든 사람에게 도움이 되기를 바랍니다.

Python에서 매개변수를 구문 분석하는 세 가지 방법에 대한 자세한 설명

【관련 추천: Python3 동영상 튜토리얼

오늘 공유하는 내용의 주요 목적은 Python의 명령줄과 구성 파일을 사용하여 코드의 효율성을 높이는 것입니다

가자!

우리는 기계 학습을 사용하여 매개변수 조정 프로세스를 연습하기 위해 선택할 수 있는 세 가지 방법이 있습니다. 첫 번째 옵션은 명령줄 구문 분석 전용으로 널리 사용되는 Python 모듈인 argparse를 사용하는 것입니다. 다른 하나는 모든 하이퍼파라미터를 넣을 수 있는 JSON 파일을 읽는 것입니다. 세 번째 옵션은 잘 알려지지 않은 YAML 파일을 사용하는 것입니다. 궁금해요, 시작해 보세요!

사전 조건

아래 코드에서는 매우 효율적인 통합 Python 개발 환경인 Visual Studio Code를 사용하겠습니다. 이 도구의 장점은 확장 기능을 설치하여 모든 프로그래밍 언어를 지원하고, 터미널을 통합하며, argparse를 사용하여 Kaggle의 공유 자전거 데이터 세트를 사용하여

수많은 Python 스크립트 및 Jupyter 노트북

데이터 세트로 동시에 작업할 수 있다는 것입니다.

Python에서 매개변수를 구문 분석하는 세 가지 방법에 대한 자세한 설명
위 그림에 표시된 것처럼 작은 프로젝트를 구성하기 위한 표준 구조가 있습니다.

  • 데이터 세트가 포함된 data라는 이름의 폴더
  • train.py 파일
  • 하이퍼 매개변수 지정을 위한 options.py 파일

먼저 데이터를 가져오고, 훈련 데이터로 모델을 훈련하고, 테스트 세트에서 평가하는 기본 절차가 있는 train.py 파일을 만들 수 있습니다.

import pandas as pd
import numpy as np
from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import mean_squared_error, mean_absolute_error

from options import train_options

df = pd.read_csv('data\hour.csv')
print(df.head())
opt = train_options()

X=df.drop(['instant','dteday','atemp','casual','registered','cnt'],axis=1).values
y =df['cnt'].values
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)

if opt.normalize == True:
    scaler = StandardScaler()
    X = scaler.fit_transform(X)
    
rf = RandomForestRegressor(n_estimators=opt.n_estimators,max_features=opt.max_features,max_depth=opt.max_depth)
model = rf.fit(X_train,y_train)
y_pred = model.predict(X_test)
rmse = np.sqrt(mean_squared_error(y_pred, y_test))
mae = mean_absolute_error(y_pred, y_test)
print("rmse: ",rmse)
print("mae: ",mae)

코드에서 train_options 함수도 가져왔습니다. options.py 파일에 포함되어 있습니다. 후자의 파일은 train.py에서 고려되는 하이퍼파라미터를 변경할 수 있는 Python 파일입니다.

import argparse

def train_options():
    parser = argparse.ArgumentParser()
    parser.add_argument("--normalize", default=True, type=bool, help='maximum depth')
    parser.add_argument("--n_estimators", default=100, type=int, help='number of estimators')
    parser.add_argument("--max_features", default=6, type=int, help='maximum of features',)
    parser.add_argument("--max_depth", default=5, type=int,help='maximum depth')
    opt = parser.parse_args()
    return opt

이 예에서는 명령줄 인수를 구문 분석할 때 매우 널리 사용되는 argparse 라이브러리를 사용합니다. 먼저 파서를 초기화한 다음 액세스하려는 매개변수를 추가할 수 있습니다.

실행 코드의 예는 다음과 같습니다.

python train.py

Python에서 매개변수를 구문 분석하는 세 가지 방법에 대한 자세한 설명
하이퍼파라미터의 기본값을 변경하는 방법에는 두 가지가 있습니다. 첫 번째 옵션은 options.py 파일에 다른 기본값을 설정하는 것입니다. 또 다른 옵션은 명령줄에서 하이퍼파라미터 값을 전달하는 것입니다.

python train.py --n_estimators 200

변경하려는 하이퍼파라미터의 이름과 해당 값을 지정해야 합니다.

python train.py --n_estimators 200 --max_depth 7

JSON 파일 사용

Python에서 매개변수를 구문 분석하는 세 가지 방법에 대한 자세한 설명
이전과 마찬가지로 비슷한 파일 구조를 유지할 수 있습니다. 이 경우 options.py 파일을 JSON 파일로 바꿉니다. 즉, JSON 파일에 하이퍼파라미터의 값을 지정하고 이를 train.py 파일에 전달하려고 합니다. JSON 파일은 키-값 쌍을 활용하여 데이터를 저장하는 argparse 라이브러리에 대한 빠르고 직관적인 대안이 될 수 있습니다. 다음으로 나중에 다른 코드에 전달해야 하는 데이터가 포함된 options.json 파일을 만듭니다.

{
"normalize":true,
"n_estimators":100,
"max_features":6,
"max_depth":5 
}

위에서 볼 수 있듯이 Python 사전과 매우 유사합니다. 그러나 사전과 달리 텍스트/문자열 형식의 데이터를 포함합니다. 또한 구문이 약간 다른 몇 가지 일반적인 데이터 유형이 있습니다. 예를 들어 부울 값은 false/true인 반면 Python은 False/True를 인식합니다. JSON에서 가능한 다른 값은 대괄호를 사용하여 Python 목록으로 표시되는 배열입니다.

Python에서 JSON 데이터 작업의 장점은 로드 메서드를 통해 Python 사전으로 변환할 수 있다는 것입니다.

f = open("options.json", "rb")
parameters = json.load(f)

특정 항목에 액세스하려면 대괄호 안에 해당 키 이름을 인용하면 됩니다.

if parameters["normalize"] == True:
    scaler = StandardScaler()
    X = scaler.fit_transform(X)
rf=RandomForestRegressor(n_estimators=parameters["n_estimators"],max_features=parameters["max_features"],max_depth=parameters["max_depth"],random_state=42)
model = rf.fit(X_train,y_train)
y_pred = model.predict(X_test)

YAML 파일 사용

Python에서 매개변수를 구문 분석하는 세 가지 방법에 대한 자세한 설명
마지막 옵션은 YAML의 잠재력을 활용하는 것입니다. JSON 파일과 마찬가지로 Python 코드의 YAML 파일을 사전으로 읽어 하이퍼파라미터 값에 액세스합니다. YAML은 JSON 파일과 같이 괄호 대신 이중 공백 문자를 사용하여 계층 구조를 표현하는 사람이 읽을 수 있는 데이터 표현 언어입니다. 아래에서는 options.yaml 파일에 포함되는 내용을 보여줍니다.

normalize: True 
n_estimators: 100
max_features: 6
max_depth: 5

train.py에서 options.yaml 파일을 엽니다. 이 파일은 항상 로드 메서드를 사용하여 Python 사전으로 변환되며 이번에는 yaml 라이브러리에서 가져옵니다.

import yaml
f = open('options.yaml','rb')
parameters = yaml.load(f, Loader=yaml.FullLoader)

이전과 마찬가지로 사전에 필요한 구문을 사용하여 하이퍼파라미터 값에 액세스할 수 있습니다.

최종 생각

프로필은 매우 빠르게 컴파일되는 반면, argparse는 추가하려는 각 인수에 대해 한 줄의 코드를 작성해야 합니다.

따라서 상황에 따라 가장 적합한 방법을 선택해야 합니다

예를 들어 매개변수에 주석을 추가해야 하는 경우 JSON은 주석을 허용하지 않기 때문에 적합하지 않지만 YAML과 argparse는 매우 적합할 수 있습니다.

【관련 추천: Python3 비디오 튜토리얼

위 내용은 Python에서 매개변수를 구문 분석하는 세 가지 방법에 대한 자세한 설명의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

성명
이 기사는 CSDN에서 복제됩니다. 침해가 있는 경우 admin@php.cn으로 문의하시기 바랍니다. 삭제
어레이는 파이썬으로 과학 컴퓨팅에 어떻게 사용됩니까?어레이는 파이썬으로 과학 컴퓨팅에 어떻게 사용됩니까?Apr 25, 2025 am 12:28 AM

Arraysinpython, 특히 비밀 복구를위한 ArecrucialInscientificcomputing.1) theaRearedFornumericalOperations, DataAnalysis 및 MachinELearning.2) Numpy'SimplementationIncensuressuressurations thanpythonlists.3) arraysenablequick

같은 시스템에서 다른 파이썬 버전을 어떻게 처리합니까?같은 시스템에서 다른 파이썬 버전을 어떻게 처리합니까?Apr 25, 2025 am 12:24 AM

Pyenv, Venv 및 Anaconda를 사용하여 다양한 Python 버전을 관리 할 수 ​​있습니다. 1) PYENV를 사용하여 여러 Python 버전을 관리합니다. Pyenv를 설치하고 글로벌 및 로컬 버전을 설정하십시오. 2) VENV를 사용하여 프로젝트 종속성을 분리하기 위해 가상 환경을 만듭니다. 3) Anaconda를 사용하여 데이터 과학 프로젝트에서 Python 버전을 관리하십시오. 4) 시스템 수준의 작업을 위해 시스템 파이썬을 유지하십시오. 이러한 도구와 전략을 통해 다양한 버전의 Python을 효과적으로 관리하여 프로젝트의 원활한 실행을 보장 할 수 있습니다.

표준 파이썬 어레이를 통해 Numpy Array를 사용하면 몇 가지 장점은 무엇입니까?표준 파이썬 어레이를 통해 Numpy Array를 사용하면 몇 가지 장점은 무엇입니까?Apr 25, 2025 am 12:21 AM

Numpyarrayshaveseveraladvantagesstandardpythonarrays : 1) thearemuchfasterduetoc 기반 간증, 2) thearemorememory-refficient, 특히 withlargedatasets 및 3) wepferoptizedformationsformationstaticaloperations, 만들기, 만들기

어레이의 균질 한 특성은 성능에 어떤 영향을 미칩니 까?어레이의 균질 한 특성은 성능에 어떤 영향을 미칩니 까?Apr 25, 2025 am 12:13 AM

어레이의 균질성이 성능에 미치는 영향은 이중입니다. 1) 균질성은 컴파일러가 메모리 액세스를 최적화하고 성능을 향상시킬 수 있습니다. 2) 그러나 유형 다양성을 제한하여 비 효율성으로 이어질 수 있습니다. 요컨대, 올바른 데이터 구조를 선택하는 것이 중요합니다.

실행 파이썬 스크립트를 작성하기위한 모범 사례는 무엇입니까?실행 파이썬 스크립트를 작성하기위한 모범 사례는 무엇입니까?Apr 25, 2025 am 12:11 AM

tocraftexecutablepythonscripts, 다음과 같은 비스트 프랙티스를 따르십시오 : 1) 1) addashebangline (#!/usr/bin/envpython3) tomakethescriptexecutable.2) setpermissionswithchmod xyour_script.py.3) organtionewithlarstringanduseifname == "__"

Numpy 배열은 배열 모듈을 사용하여 생성 된 배열과 어떻게 다릅니 까?Numpy 배열은 배열 모듈을 사용하여 생성 된 배열과 어떻게 다릅니 까?Apr 24, 2025 pm 03:53 PM

numpyarraysarebetterfornumericaloperations 및 multi-dimensionaldata, mumemer-efficientArrays

Numpy Array의 사용은 Python에서 어레이 모듈 어레이를 사용하는 것과 어떻게 비교됩니까?Numpy Array의 사용은 Python에서 어레이 모듈 어레이를 사용하는 것과 어떻게 비교됩니까?Apr 24, 2025 pm 03:49 PM

numpyarraysarebetterforheavynumericalcomputing, whilearraymoduleisiMoresuily-sportainedprojectswithsimpledatatypes.1) numpyarraysofferversatively 및 formanceforgedatasets 및 complexoperations.2) Thearraymoduleisweighit 및 ep

CTYPES 모듈은 파이썬의 어레이와 어떤 관련이 있습니까?CTYPES 모듈은 파이썬의 어레이와 어떤 관련이 있습니까?Apr 24, 2025 pm 03:45 PM

ctypesallowscreatingandmanipulatingC-stylearraysinPython.1)UsectypestointerfacewithClibrariesforperformance.2)CreateC-stylearraysfornumericalcomputations.3)PassarraystoCfunctionsforefficientoperations.However,becautiousofmemorymanagement,performanceo

See all articles

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

Video Face Swap

Video Face Swap

완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

뜨거운 도구

WebStorm Mac 버전

WebStorm Mac 버전

유용한 JavaScript 개발 도구

DVWA

DVWA

DVWA(Damn Vulnerable Web App)는 매우 취약한 PHP/MySQL 웹 애플리케이션입니다. 주요 목표는 보안 전문가가 법적 환경에서 자신의 기술과 도구를 테스트하고, 웹 개발자가 웹 응용 프로그램 보안 프로세스를 더 잘 이해할 수 있도록 돕고, 교사/학생이 교실 환경 웹 응용 프로그램에서 가르치고 배울 수 있도록 돕는 것입니다. 보안. DVWA의 목표는 다양한 난이도의 간단하고 간단한 인터페이스를 통해 가장 일반적인 웹 취약점 중 일부를 연습하는 것입니다. 이 소프트웨어는

SublimeText3 영어 버전

SublimeText3 영어 버전

권장 사항: Win 버전, 코드 프롬프트 지원!

에디트플러스 중국어 크랙 버전

에디트플러스 중국어 크랙 버전

작은 크기, 구문 강조, 코드 프롬프트 기능을 지원하지 않음

메모장++7.3.1

메모장++7.3.1

사용하기 쉬운 무료 코드 편집기