이 기사에서는 프로그램, 프로세스, 스레드, 스레드를 생성하는 세 가지 방법, 스레드 상태 등 멀티스레딩과 관련된 문제를 주로 소개하는 java에 대한 관련 지식을 제공합니다. 아래 내용이 모두에게 도움이 되기를 바랍니다.
추천 학습: "java 동영상 튜토리얼"
프로그램(program): 특정 언어로 작성되어 특정 작업을 완료합니다. 작업 지침 세트는 정적 코드 조각입니다. (프로그램은 정적이다)
Process(프로세스) : 프로그램의 실행 프로세스, 실행 중인 프로그램, 프로세스는 자원 할당의 단위이며, 각 프로세스는 서로 다른 메모리 영역을 할당합니다. (프로세스는 동적입니다.) 프로세스의 생명주기는 생성, 존재, 소멸이라는 고유한 프로세스를 가지고 있습니다
현재 운영 체제는 여러 프로세스를 지원하며 한 번에 여러 프로세스를 실행할 수 있습니다. 프로세스 ID로 구별
스레드(thread): 프로세스의 실행 경로이며 CUP의 기본 스케줄링 단위이기도 합니다. 프로세스는 하나 이상의 스레드로 구성됩니다. , 각각은 서로 다른 작업을 완료합니다. 동시에 여러 스레드에 의해 실행되는 작업을 멀티스레딩이라고 합니다.
스레드 구성
모든 스레드가 갖는 기본 구성 요소:
- CPU 타임 슬라이스: 운영 체제(OS)는 실행 시간을 각 스레드에 할당합니다.
- 실행 데이터: 힙 공간(스레드가 사용해야 하는 개체 저장, 여러 스레드가 힙에서 개체를 공유할 수 있음) 스택 공간(스레드가 사용해야 하는 지역 변수 저장, 각 스레드는 독립적인 스택을 가짐)
스레드의 특징
- 스레드 선점형 실행(고효율, 단일 스레드가 장기간 CPU를 독점하는 것을 방지할 수 있음)
- 싱글 코어 CPU가 실행될 때 타임 슬라이스에 따라 실행되며, 하나의 타임 슬라이스가 스레드에서 실행될 수 있습니다. 타임 슬라이스가 매우 짧기 때문에 우리가 느끼는 것은 이들이 "동시에" 발생한다는 것입니다.
- 멀티 코어 CPU는 진정한 단일 타임 슬라이스에서 여러 스레드의 동시 실행을 달성합니다.
- 싱글 코어 CPU에서는 거시적으로는 동시 실행, 미시적으로는 순차적 실행
- 프로세스는 운영체제의 자원 할당의 기본 단위이고, 스레드는 CPU의 기본 스케줄링 단위입니다.
- 프로그램이 실행된 후에는 적어도 하나의 프로세스가 있습니다.
- 프로세스에는 여러 스레드가 포함될 수 있습니다. 최소한 하나의 스레드여야 합니다. 그렇지 않으면 프로세스가 의미가 없습니다.
- 데이터 세그먼트 주소는 프로세스 간에 공유될 수 없지만 동일한 프로세스의 스레드 간에는 공유될 수 있습니다.
1. Thread 클래스 상속
2. run() 메서드 재정의
3 . 하위 클래스 객체 생성
4. start() 메소드 호출(PS: run() 메소드를 호출하지 마십시오. 이는 일반적으로 객체 메소드를 호출하고 스레드를 시작하는 것과 같습니다)
상속 클래스
public class MyThread extends Thread { @Override public void run() { for (int i = 1; i " + i); } }}
테스트 클래스
public class TestThread { public static void main(String[] args) { MyThread myThread = new MyThread(); myThread.start(); for (int i = 1; i "+i); } }}
Result
getId()
//스레드 ID 가져오기, 각 스레드에는 고유한 ID가 있습니다. idgetId()
//获取线程的id,每个线程都有自己的idgetName()
//获取线程名字Thread.currentThread()
//获取当前线程
代码
public class TestThread { public static void main(String[] args) { MyThread t=new MyThread(); t.start(); //只能在继承Thread类的情况下用 System.out.println("线程id:"+t.getId()); System.out.println("线程名字:"+t.getName()); //调用Thread类的静态方法获取当前线程(这里获取的是主线程) System.out.println("线程id:"+Thread.currentThread().getId()); System.out.println("线程名字:"+Thread.currentThread().getName()); }}
只能修改线程的名称,不能修改线程的id(id是由系统自动分配)
1、使用线程子类的构造方法赋值
2、调用线程对象的setName()
getName()
//스레드 이름 가져오기Thread.currentThread()
//현재 스레드 가져오기
code
🎜public class MyThread extends Thread{ public MyThread() {}//无参构造器 public MyThread(String name) { super(name); } public void run() { for(int i=1;i🎜<img src="https://img.php.cn%20/upload/article/000/000/067/57e2f75a769022a530da131db2d02e06-6.png" alt="여기에 그림 설명 삽입">🎜🎜스레드 이름 수정🎜🎜🎜이름만 스레드는 수정이 가능하지만 스레드의 id는 수정이 불가능합니다. (id는 시스템에서 자동으로 할당됩니다.)🎜 1. 스레드 서브클래스의 생성자 메소드를 사용하여 값을 할당합니다🎜 2. <code>setName()을 호출합니다. </code> 스레드 객체의 메서드🎜🎜🎜🎜Code🎜🎜<pre class="brush:php;toolbar:false">public class MyThread extends Thread{ public MyThread() {}//无参构造器 public MyThread(String name) { super(name); } public void run() { for(int i=1;i<pre class="brush:php;toolbar:false">public class TestThread { public static void main(String[] args) { MyThread t1=new MyThread("子线程1");//通过构造方法 MyThread t2=new MyThread(); t2.setName("子线程2"); System.out.println("线程t1的id:"+t1.getId()+" 名称:"+t1.getName()); System.out.println("线程t2的id:"+t2.getId()+" 名称:"+t2.getName()); }}
1.实现
Runnable
接口
2.实现run()
方法
3.创建实现类对象
4.创建线程类对象
5.调用start()
方法
实现接口
public class MyRunnable implements Runnable{//实现接口 @Override public void run() {//实现run方法 // TODO Auto-generated method stub for(int i=1;i<p><strong>测试类</strong></p><pre class="brush:php;toolbar:false">public class TestRunnable { public static void main(String[] args) { //1.创建MyRunnable对象,表示线程执行的功能 Runnable runnable=new MyRunnable(); //2.创建线程对象 Thread th=new Thread(runnable); //3.启动线程 th.start(); for(int i=1;i<p><img src="https://img.php.cn/upload/article/000/000/067/beb0b9e2f551ceb35ac7ab846edfec3d-8.png" alt="Java 멀티스레딩 메커니즘에 대해 자세히 알아보기"></p><h3>使用匿名内部类</h3><blockquote><p>如果一个线程方法我们只使用一次,那么就不必设置一个单独的类,就可以使用匿名内部类实现该功能</p></blockquote><pre class="brush:php;toolbar:false">public class TestRunnable { public static void main(String[] args) { Runnable runnable=new Runnable() { @Override public void run() { // TODO Auto-generated method stub for(int i=1;i<h2>2.3 实现Callable接口</h2><h3>Callable和Thread、Runnable比较</h3><blockquote> <p>对比继承<code>Thread</code>类和实现<code>Runnable</code>接口创建线程的方式发现,都需要有一个<code>run()</code>方法,但是这个run()方法有不足:</p> <ul> <li>没有返回值</li> <li>不能抛出异常</li> </ul> <p>基于上面的两个不足,在JDK1.5以后出现了第三种创建线程的方式:实现<code>Callable</code>接口</p> <p>实现<code>Callable</code>接口的好处:</p> <ul> <li>有返回值</li> <li>能抛出异常</li> </ul> <p>缺点:</p> <ul><li>创建线程比较麻烦</li></ul> </blockquote><blockquote> <p>1.实现<code>Callable</code>接口,可以不带泛型,如果不带泛型,那么call方法的返回值就是<code>Object</code>类型</p> <p>2.如果带泛型,那么call的返回值就是泛型对应的类型</p> <p>3.从call方法看到:方法有返回值,可以抛出异常</p> </blockquote><h3>具体实现</h3><p><strong>实现接口</strong></p><pre class="brush:php;toolbar:false">import java.util.Random;import java.util.concurrent.Callable;import java.util.concurrent.ExecutionException;import java.util.concurrent.FutureTask;public class TestCallable implements Callable<integer>{ @Override public Integer call() throws Exception { // TODO Auto-generated method stub return new Random().nextInt(10); }}</integer>
测试类
import java.util.concurrent.ExecutionException;import java.util.concurrent.FutureTask;public class Test { public static void main(String[] args) throws InterruptedException, ExecutionException { TestCallable tc=new TestCallable(); FutureTask<integer> ft=new FutureTask(tc); //创建线程对象 Thread th=new Thread(ft); th.start(); //获取线程得到的返回值 Integer In=ft.get(); System.out.println(In); }}</integer>
休眠(当前线程主动休眠millis毫秒)
public static void sleep(long millis)
放弃(当前线程主动放弃时间片,回到就绪状态,竞争下一次时间片)
public static void yield()
加入(当一个线程调用了join方法,这个线程就会先被执行,它执行结束以后才可以去执行其余的线程)
public final void join()
//必须先start(),在join(),才有效优先级(线程优先级为1–10,默认为5,优先级越高,表示获取CPU机会越多)
线程对象.setPriority()
守护线程
- 线程对象.setDaemon(true);设置为守护线程
- 线程有两类:用户线程(前台线程)、守护线程(后台线程)
- 如果程序中所有前台线程都执行完毕了,后台线程也会自动结束
- 垃圾回收器线程属于守护线程
public static void sleep(long millis)
当前线程主动休眠millis毫秒
子线程
public class SleepThread extends Thread{ @Override public void run() { for (int i = 1; i <p><mark>PS:sleep()的异常在run方法中是不能抛出的,只能用try–catch处理</mark><br><strong>测试类</strong></p><pre class="brush:php;toolbar:false">public class Test01 { public static void main(String[] args) { SleepThread sleepThread = new SleepThread(); sleepThread.start(); }}
结果:每次间隔100ms输出一次
public static void yield()
当前线程主动放弃时间片,回到就绪状态,竞争下一次时间片
子线程
public class YieldThread extends Thread{ @Override public void run() { for (int i=1;i<p><strong>测试类</strong></p><pre class="brush:php;toolbar:false">public class Test01 { public static void main(String[] args) { YieldThread yieldThread01 = new YieldThread(); YieldThread yieldThread02 = new YieldThread(); yieldThread01.start(); yieldThread02.start(); }}
结果:基本都会交替进行,也会有一个线程连输出
当一个线程调用了join方法,这个线程就会先被执行,它执行结束以后才可以去执行其余的线程,必须先start,再join才有效
子线程
public class JoinThread extends Thread{ @Override public void run() { for (int i=1;i<p><strong>测试类</strong></p><pre class="brush:php;toolbar:false">public class Test01 { public static void main(String[] args) throws InterruptedException { for (int i=1;i<p><strong>结果:当主线程打印到5的时候,这时候子线程加入进来,就先执行完子线程,在执行主线程</strong><br><img src="https://img.php.cn/upload/article/000/000/067/da3747d2bd3ee6a154b0a90e8cc9f0a7-14.png" alt="Java 멀티스레딩 메커니즘에 대해 자세히 알아보기"></p><h2>4.4 守护线程(setDaemon)</h2><blockquote><p>将子线程设置为主线程的伴随线程,主线程停止的时候,子线程也不要继续执行了<br> 注意:<strong>先设置,在启动</strong></p></blockquote><p><strong>子线程</strong></p><pre class="brush:php;toolbar:false">public class TestThread extends Thread{ @Override public void run() { for(int i=1;i<p><strong>测试类</strong></p><pre class="brush:php;toolbar:false">public class Test01 { public static void main(String[] args) throws InterruptedException { TestThread daemonThread = new TestThread(); daemonThread.setDaemon(true);//设置守护线程 daemonThread.start(); for (int i=1;i<p><strong>结果:当主线程结束时,子线程也跟着结束,并不会继续执行下去打印输出</strong><br><img src="https://img.php.cn/upload/article/000/000/067/da3747d2bd3ee6a154b0a90e8cc9f0a7-15.png" alt="Java 멀티스레딩 메커니즘에 대해 자세히 알아보기"></p><h2>4.5 线程优先级(setPriority)</h2><blockquote><p>线程优先级为1-10,默认为5,优先级越高,表示获取CPU机会越多<br><img src="https://img.php.cn/upload/article/000/000/067/da3747d2bd3ee6a154b0a90e8cc9f0a7-16.png" alt="Java 멀티스레딩 메커니즘에 대해 자세히 알아보기"></p></blockquote><p><strong>子线程</strong></p><pre class="brush:php;toolbar:false">public class TestThread extends Thread{ @Override public void run() { for(int i=1;i<p><strong>测试</strong></p><pre class="brush:php;toolbar:false">public class Test01 { public static void main(String[] args) throws InterruptedException { TestThread th1 = new TestThread(); TestThread th2 = new TestThread(); TestThread th3 = new TestThread(); th1.setPriority(10);//设置线程1优先级10 th1.start(); th2.start();//线程2优先级默认不变,为5 th3.setPriority(1);//设置线程3优先级为1 th3.start(); }}
结果:优先级(th1>th2>th3)线程3应该在最后打印
需求:模拟三个窗口,每个窗口有100个人,同时抢10张票
使用继承Runnable接口的方法
public class BuyTicketRunnable implements Runnable{ private int ticketNum=10; @Override public void run() { for(int i=1;i<p><strong>测试方法</strong></p><pre class="brush:php;toolbar:false">public class BuyTicketTest { public static void main(String[] args) { // TODO Auto-generated method stub Runnable runnable=new BuyTicketRunnable(); Thread th1=new Thread(runnable,"窗口1"); Thread th2=new Thread(runnable,"窗口2"); Thread th3=new Thread(runnable,"窗口3"); th1.start(); th2.start(); th3.start(); }}
结果
我们发现,不同窗口会抢到同一张票!!!,这在实际情况是不允许的,这是因为多个线程,在争抢资源的过程中,导致共享的资源出现问题。一个线程还没执行完,另一个线程就参与进来了,开始争抢。(但窗口2抢到第10张票,还没来得及
ticketNum--
操作,时间片就用完了,随后被窗口三抢到CPU资源,此时的票数还是10,窗口三也抢到第十张票,也还没来得及ticketNum--
操作窗口三时间片由完了,窗口一抢到CPU资源,还是买到了第10张票)
多线程安全问题:
- 当多线程并发访问临界资源时,如果破坏原子操作,可能会造成数据不一致
- 临界资源:共享资源(同一对象),一次只能允许一个线程使用,才可以保证其正确性
- 原子操作:不可分割的多步操作,被视作一个整体,其顺序和步骤不可被打乱或缺省
synchronized
(同步监视器)
- 必须是引用数据类型,不能是基本数据类型
- 也可以创建一个专门的同步监视器,没有任何业务含义 (new Object)
- 一般使用共享资源做同步监视器即可
- 在同步代码块中不能改变同步监视器对象的引用
- 尽量不要String和包装类Integer做同步监视器,建议使用final修饰同步监视器
对卖票案例改进
public class BuyTicketRunnable implements Runnable{ static Object obj=new Object(); private int ticketNum=10; @Override public void run() { for(int i=1;i<blockquote><ul> <li>多个代码块使用了同一个同步监视器(锁),锁住一个代码块的同时,也锁住所有使用该锁的所有代码块,其他线程无法访问其中的任何一个代码块</li> <li>多个代码块使用了同一个同步监视器(锁),锁住一个代码块的同时,也锁住所有使用该锁的所有代码块, 但是没有锁住使用其他同步监视器的代码块,其他线程有机会访问其他同步监视器的代码块</li> </ul></blockquote><h2>5.3 同步方法</h2><blockquote> <p><code>synchronized</code>(同步方法)</p> <ul> <li>不要将run()定义为同步方法</li> <li>非静态同步方法的同步监视器是this;静态同步方法(static)的同步监视器是 类名.class 字节码信息对象</li> <li>同步代码块的效率要高于同步方法(原因:同步方法是将线程挡在了方法的外部,而同步代码块锁将线程挡在了代码块的外部,但是却是方法的内部)</li> <li>同步方法的锁是this,一旦锁住一个方法,就锁住了所有的同步方法;同步代码块只是锁住使用该同步监视器的代码块,而没有锁住使用其他监视器的代码块</li> </ul> </blockquote><p><strong>买票案例改进</strong></p><pre class="brush:php;toolbar:false">public class BuyTicketRunnable implements Runnable{ private int ticketNum=10; @Override public void run() { for(int i=1;i0) { System.out.println("在"+Thread.currentThread().getName()+"买到了第"+ticketNum+"张票!"); ticketNum--; } }}
Lock
锁:
- DK1.5后新增新一代的线程同步方式:Lock锁,与采用synchronized相比,lock可提供多种锁方案,更灵活
- synchronized是Java中的关键字,这个关键字的识别是靠JVM来识别完成的呀。是虚拟机级别的。
但是Lock锁是API级别的,提供了相应的接口和对应的实现类,这个方式更灵活,表现出来的性能优于之前的方式。
对买票案例改进
import java.util.concurrent.locks.Lock;import java.util.concurrent.locks.ReentrantLock;public class BuyTicketRunnable implements Runnable{ private int ticketNum=10; Lock lock=new ReentrantLock();//接口=实现类 可以使用不同的实现类 @Override public void run() { for(int i=1;i0) { System.out.println("在"+Thread.currentThread().getName()+"买到了第"+ticketNum+"张票!"); ticketNum--; } }catch(Exception e) { e.printStackTrace(); }finally { //关闭锁:--->即使有异常,这个锁也可以得到释放 lock.unlock(); } } }}
Lock和synchronized的区别
- Lock是显式锁(手动开启和关闭锁,别忘记关闭锁),synchronized是隐式锁
- Lock只有代码块锁,synchronized有代码块锁和方法锁
- 使用Lock锁,JVM将花费较少的时间来调度线程,性能更好。并且具有更好的扩展性(提供更多的子类)
- 不同的线程分别占用对方需要的同步资源不放弃,都在等待对方放弃自己需要的同步资源,就形成了线程的死锁
- 出现死锁后,不会出现异常,不会出现提示,只是所有的线程都处于阻塞状态,无法继续
*案例:男孩女孩一起去吃饭,但是桌子上只有两根筷子,如果两个人同时抢到一根筷子而不放弃,这样两个人都吃不上饭,这样就形成死锁了;必须要有一个人放弃争抢,等待另一个人用完,释放资源,这个人之后才会获得两根筷子,两个人才能都吃上饭 *
package 多线程;class Eat{ //代表两个筷子 public static Object o1=new Object(); public static Object o2=new Object(); public static void eat() { System.out.println("可以吃饭了"); }}class BoyThread extends Thread{ public void run() { synchronized (Eat.o1) { System.out.println("男孩拿到了第一根筷子!"); synchronized (Eat.o2) { System.out.println("男孩拿到了第二根筷子!"); Eat.eat(); } } }}class GirlThread extends Thread{ public void run() { synchronized (Eat.o2) { System.out.println("女孩拿到了第二根筷子!"); synchronized (Eat.o1) { System.out.println("女孩拿到了第一根筷子!"); Eat.eat(); } } }}public class MyLock { public static void main(String[] args) { BoyThread boy=new BoyThread(); GirlThread girl=new GirlThread(); boy.start(); girl.start(); }}
结果
解决办法
先让男孩拿到筷子,线程休眠一下,等待男孩用完筷子,在启动女孩线程
public class MyLock { public static void main(String[] args) { BoyThread boy=new BoyThread(); GirlThread girl=new GirlThread(); boy.start(); try { Thread.sleep(100); } catch (InterruptedException e) { // TODO Auto-generated catch block e.printStackTrace(); } girl.start(); }}
在写程序中要避免这种死锁:减少同步资源的定义,避免嵌套同步
在Java对象中,有两种池
- 锁池(
synchronized
)- 等待池(
wait()
;notify()
;notifyAll()
)
如果一个线程调用了某个对象的wait方法,那么该线程进入到该对象的等待池中(并且已经将锁释放);
如果未来的某个时刻,另外一个线程调用了相同的对象notify方法或者notifyAll方法,那么该等待池中的线程就会被唤醒,然后进入到对象的锁池里面去获得该对象的锁;
如果获得锁成功后,那么该线程就会沿着wait方法之后的路径继续执行。注意:沿着wait方法之后执行
- wait():的作用是让当前线程进入等待状态,同时,wait()也会让当前线程释放它所持有的锁。直到其他线程调用此对象的
notify()
方法或notifyAll()
方法,当前线程被唤醒(进入就绪状态)- wait(long timeout):让当前线程处于“等待(阻塞)状态,直到其他线程调用此对象的
notify()
方法或notifyAll()
方法,或者超过指定的时间量”,当前线程被唤醒(进入就绪状态)
sleep和wait的区别:sleep进入阻塞状态没有释放锁,wait进入阻塞状态但是同时释放了锁
notify()和notifyAll()的作用,则是唤醒当前对象上的等待线程
- notify()是唤醒单个线程
- notifyAll()是唤醒所有的线程
案例:
假设仓库中只能存放一件产品,生产者将生产出来的产品放入仓库,消费者将仓库中产品取走消费。
如果仓库中没有产品,则生产者将产品放入仓库,否则停止生产并等待,直到仓库中的产品被消费者取走为止。
如果仓库中放有产品,则消费者可以将产品取走消费,否则停止消费并等待,直到仓库中再次放入产品为止。
功能分解一:商品类
public class Product {//商品类 private String name;//名字 private String brand;//品牌 boolean flag = false;//设置标记,false表示商品没有,等待生产者生产 public synchronized void setProduct(String name, String brand) {//生产商品,同步方法,锁住的是this if (flag == true) {//如果flag为true,代表有商品,不生产,等待消费者消费 try { wait(); } catch (InterruptedException e) { e.printStackTrace(); } } //生产商品 this.setName(name); this.setBrand(brand); System.out.println("生产者生产了" +this.getBrand() +this.getName()); //生产完,设置标志 flag = true; //唤醒消费线程 notify(); } public synchronized void getProduct() { if (flag == false) {//如果是false,则没有商品,等待生产者生产 try { wait(); } catch (InterruptedException e) { e.printStackTrace(); } } //如果有商品,消费 System.out.println("消费者消费了" + this.getBrand() +this.getName()); //设置标志 flag = false; //唤醒线程 notify(); } public void setName(String name) { this.name = name; } public String getName() { return name; } public void setBrand(String brand) { this.brand = brand; } public String getBrand() { return brand; }}
功能分解二:生产者线程
public class ProducterThread extends Thread {//生产者线程 private Product p; public ProducterThread(Product p) { this.p = p; } @Override public void run() { for (int i = 1; i <p><strong>功能分解三:消费者线程</strong></p><pre class="brush:php;toolbar:false">public class CustomerThread extends Thread {//消费者线程 private Product pro; public CustomerThread(Product pro) { this.pro = pro; } @Override public void run() { for (int i = 1; i <p><strong>功能分解四:测试类</strong></p><pre class="brush:php;toolbar:false">public class Test { public static void main(String[] args) { Product p = new Product(); ProducterThread pth = new ProducterThread(p); CustomerThread cth = new CustomerThread(p); pth.start(); cth.start(); }}
结果:生产者生产一件商品,消费者消费一件商品,交替进行
추천 학습: "java 비디오 튜토리얼"
위 내용은 Java 멀티스레딩 메커니즘에 대해 자세히 알아보기의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!