대용량 파일을 빠르게 업로드하는 솔루션에 대해서도 들어보셨을 거라 생각합니다. 사실 그것은 파일 리소스를 압축하거나 업로드하기 전에 파일 리소스를 덩어리로 나누는 것 외에는 아무것도 아닙니다.
이 글에서는 리소스를 부분적으로 업로드하는 방법만 소개하며, 프론트엔드(vue3 + vite)와 서버(nodejs +) 간의 상호작용을 통해 대용량 파일을 부분적으로 업로드하는 간단한 기능을 구현해보겠습니다. 코아2).
아이디어 정리
질문 1: 리소스 청크의 책임은 누구에게 있습니까? 자원 통합을 담당하는 사람은 누구입니까?
물론 이 문제도 매우 간단합니다. 청킹은 프런트 엔드가 담당하고 통합은 서버가 담당해야 합니다.
질문 2: 프런트 엔드는 리소스를 어떻게 분류하나요?
첫 번째 단계는 업로드된 파일 리소스를 선택한 다음 해당 파일 개체 File을 가져올 수 있습니다. File.prototype.slice 메서드는 리소스 분할을 달성할 수 있습니다. 물론 Blob.prototype이라고 말하는 사람들도 있습니다. Blob.prototype.slice === File.prototype.slice
이기 때문에 슬라이스 메서드를 사용합니다. Blob.prototype.slice === File.prototype.slice
。
问题 3:服务端怎么知道什么时候要整合资源?如何保证资源整合的有序性?
由于前端会将资源分块,然后单独发送请求,也就是说,原来 1 个文件对应 1 个上传请求,现在可能会变成 1 个文件对应 n 个上传请求,所以前端可以基于 Promise.all 将这多个接口整合,上传完成在发送一个合并的请求,通知服务端进行合并。
合并时可通过 nodejs 中的读写流(readStream/writeStream),将所有切片的流通过管道(pipe)输入最终文件的流中。
在发送请求资源时,前端会定好每个文件对应的序号,并将当前分块、序号以及文件 hash 等信息一起发送给服务端,服务端在进行合并时,通过序号进行依次合并即可。
问题 4:如果某个分块的上传请求失败了,怎么办?
一旦服务端某个上传请求失败,会返回当前分块失败的信息,其中会包含文件名称、文件 hash、分块大小以及分块序号等,前端拿到这些信息后可以进行重传,同时考虑此时是否需要将 Promise.all 替换为 Promise.allSettled 更方便。
前端部分
创建项目
通过 pnpm create vite 创建项目,对应文件目录如下.
请求模块
src/request.js
该文件就是针对 axios 进行简单的封装,如下:
import axios from "axios"; const baseURL = 'http://localhost:3001'; export const uploadFile = (url, formData, onUploadProgress = () => { }) => { return axios({ method: 'post', url, baseURL, headers: { 'Content-Type': 'multipart/form-data' }, data: formData, onUploadProgress }); } export const mergeChunks = (url, data) => { return axios({ method: 'post', url, baseURL, headers: { 'Content-Type': 'application/json' }, data }); }
文件资源分块
根据 DefualtChunkSize = 5 * 1024 * 1024 ,即 5 MB ,来对文件进行资源分块进行计算,通过 spark-md5[1] 根据文件内容计算出文件的 hash 值,方便做其他优化,比如:当 hash 值不变时,服务端没有必要重复读写文件等。
// 获取文件分块 const getFileChunk = (file, chunkSize = DefualtChunkSize) => { return new Promise((resovle) => { let blobSlice = File.prototype.slice || File.prototype.mozSlice || File.prototype.webkitSlice, chunks = Math.ceil(file.size / chunkSize), currentChunk = 0, spark = new SparkMD5.ArrayBuffer(), fileReader = new FileReader(); fileReader.onload = function (e) { console.log('read chunk nr', currentChunk + 1, 'of'); const chunk = e.target.result; spark.append(chunk); currentChunk++; if (currentChunk < chunks) { loadNext(); } else { let fileHash = spark.end(); console.info('finished computed hash', fileHash); resovle({ fileHash }); } }; fileReader.onerror = function () { console.warn('oops, something went wrong.'); }; function loadNext() { let start = currentChunk * chunkSize, end = ((start + chunkSize) >= file.size) ? file.size : start + chunkSize; let chunk = blobSlice.call(file, start, end); fileChunkList.value.push({ chunk, size: chunk.size, name: currFile.value.name }); fileReader.readAsArrayBuffer(chunk); } loadNext(); }); }
发送上传请求和合并请求
通过 Promise.all 方法整合所以分块的上传请求,在所有分块资源上传完毕后,在 then 中发送合并请求。
// 上传请求 const uploadChunks = (fileHash) => { const requests = fileChunkList.value.map((item, index) => { const formData = new FormData(); formData.append(`${currFile.value.name}-${fileHash}-${index}`, item.chunk); formData.append("filename", currFile.value.name); formData.append("hash", `${fileHash}-${index}`); formData.append("fileHash", fileHash); return uploadFile('/upload', formData, onUploadProgress(item)); }); Promise.all(requests).then(() => { mergeChunks('/mergeChunks', { size: DefualtChunkSize, filename: currFile.value.name }); }); }
进度条数据
分块进度数据利用 axios 中的 onUploadProgress 配置项获取数据,通过使用computed 根据分块进度数据的变化自动自动计算当前文件的总进度。
// 总进度条 const totalPercentage = computed(() => { if (!fileChunkList.value.length) return 0; const loaded = fileChunkList.value .map(item => item.size * item.percentage) .reduce((curr, next) => curr + next); return parseInt((loaded / currFile.value.size).toFixed(2)); }) // 分块进度条 const onUploadProgress = (item) => (e) => { item.percentage = parseInt(String((e.loaded / e.total) * 100)); }
服务端部分
搭建服务
使用 koa2 搭建简单的服务,端口为 3001
使用 koa-body 处理接收前端传递 'Content-Type': 'multipart/form-data'
类型的数据
使用 koa-router 注册服务端路由
使用 koa2-cors 处理跨域问题
目录/文件划分
server/server.js
该文件是服务端具体的代码实现,用于处理接收和整合分块资源。
server/resources
질문 3: 서버는 리소스를 통합할 시기를 어떻게 알 수 있나요? 자원 통합의 질서를 보장하는 방법은 무엇입니까?
// 上传请求 router.post( '/upload', // 处理文件 form-data 数据 koaBody({ multipart: true, formidable: { uploadDir: outputPath, onFileBegin: (name, file) => { const [filename, fileHash, index] = name.split('-'); const dir = path.join(outputPath, filename); // 保存当前 chunk 信息,发生错误时进行返回 currChunk = { filename, fileHash, index }; // 检查文件夹是否存在如果不存在则新建文件夹 if (!fs.existsSync(dir)) { fs.mkdirSync(dir); } // 覆盖文件存放的完整路径 file.path = `${dir}/${fileHash}-${index}`; }, onError: (error) => { app.status = 400; app.body = { code: 400, msg: "上传失败", data: currChunk }; return; }, }, }), // 处理响应 async (ctx) => { ctx.set("Content-Type", "application/json"); ctx.body = JSON.stringify({ code: 2000, message: 'upload successfully!' }); });🎜🎜파일 리소스 청크🎜🎜🎜 DefualtChunkSize = 5 * 1024 * 1024, 즉 5MB에 따라 파일의 리소스 청크가 계산되며 이를 기반으로 계산됩니다. Spark-md5[1]를 통해 파일 내용을 가져옵니다. 파일의 해시 값은 다른 최적화에 편리합니다. 예를 들어 해시 값이 변경되지 않은 경우 서버는 파일을 반복적으로 읽고 쓸 필요가 없습니다. 🎜
// 合并请求 router.post('/mergeChunks', async (ctx) => { const { filename, size } = ctx.request.body; // 合并 chunks await mergeFileChunk(path.join(outputPath, '_' + filename), filename, size); // 处理响应 ctx.set("Content-Type", "application/json"); ctx.body = JSON.stringify({ data: { code: 2000, filename, size }, message: 'merge chunks successful!' }); }); // 通过管道处理流 const pipeStream = (path, writeStream) => { return new Promise(resolve => { const readStream = fs.createReadStream(path); readStream.pipe(writeStream); readStream.on("end", () => { fs.unlinkSync(path); resolve(); }); }); } // 合并切片 const mergeFileChunk = async (filePath, filename, size) => { const chunkDir = path.join(outputPath, filename); const chunkPaths = fs.readdirSync(chunkDir); if (!chunkPaths.length) return; // 根据切片下标进行排序,否则直接读取目录的获得的顺序可能会错乱 chunkPaths.sort((a, b) => a.split("-")[1] - b.split("-")[1]); console.log("chunkPaths = ", chunkPaths); await Promise.all( chunkPaths.map((chunkPath, index) => pipeStream( path.resolve(chunkDir, chunkPath), // 指定位置创建可写流 fs.createWriteStream(filePath, { start: index * size, end: (index + 1) * size }) ) ) ); // 合并后删除保存切片的目录 fs.rmdirSync(chunkDir); };🎜🎜업로드 요청 및 병합 요청 보내기🎜🎜🎜Promise.all 메소드를 통해 모든 청크된 업로드 요청을 통합합니다. 모든 청크된 리소스가 업로드된 후 병합 요청을 보냅니다. 🎜rrreee🎜🎜진행률 표시줄 데이터🎜🎜🎜차단된 진행률 데이터는 axios의 onUploadProgress 구성 항목을 사용하여 데이터를 얻고, 계산된 블록 진행률 데이터의 변경 사항을 기반으로 현재 파일의 전체 진행률을 자동으로 계산합니다. 🎜🎜🎜rrreee r 서버 부품 🎜🎜🎜🎜🎜🎜 건설 서비스 🎜🎜🎜🎜🎜🎜 KOA2를 사용하여 간단한 서비스를 구축합니다. code> Content- Type': 'multipart/form-data' 데이터 유형🎜🎜🎜🎜koa-router를 사용하여 서버 라우팅 등록🎜🎜🎜🎜koa2-cors를 사용하여 도메인 간 문제 처리🎜🎜🎜🎜디렉토리 /파일 분할🎜🎜🎜
server/server.js
🎜🎜이 파일은 서버의 특정 코드 구현으로, 청크된 리소스의 수신 및 통합을 처리하는 데 사용됩니다. 🎜🎜server/resources
🎜🎜이 디렉터리는 단일 파일의 여러 블록과 최종 블록 통합 이후의 리소스를 저장하는 데 사용됩니다. 🎜🎜🎜🎜블록 리소스가 병합되지 않은 경우, 이 파일과 관련된 모든 청크를 저장하기 위해 이 디렉터리에 현재 파일 이름을 가진 디렉터리를 생성합니다. 청크된 리소스를 병합해야 할 경우 이 파일에 해당하는 디렉터리의 모든 청크된 리소스를 읽은 다음 원본 파일에 통합되었습니다 🎜分块资源合并完成,会删除这个对应的文件目录,只保留合并后的原文件,生成的文件名比真实文件名多一个 _
前缀,如原文件名 "测试文件.txt
" 对应合并后的文件名 "_测试文件.txt
"
接收分块
使用 koa-body
中的 formidable
配置中的 onFileBegin
函数处理前端传来的 FormData 中的文件资源,在前端处理对应分块名时的格式为:filename-fileHash-index
,所以这里直接将分块名拆分即可获得对应的信息。
// 上传请求 router.post( '/upload', // 处理文件 form-data 数据 koaBody({ multipart: true, formidable: { uploadDir: outputPath, onFileBegin: (name, file) => { const [filename, fileHash, index] = name.split('-'); const dir = path.join(outputPath, filename); // 保存当前 chunk 信息,发生错误时进行返回 currChunk = { filename, fileHash, index }; // 检查文件夹是否存在如果不存在则新建文件夹 if (!fs.existsSync(dir)) { fs.mkdirSync(dir); } // 覆盖文件存放的完整路径 file.path = `${dir}/${fileHash}-${index}`; }, onError: (error) => { app.status = 400; app.body = { code: 400, msg: "上传失败", data: currChunk }; return; }, }, }), // 处理响应 async (ctx) => { ctx.set("Content-Type", "application/json"); ctx.body = JSON.stringify({ code: 2000, message: 'upload successfully!' }); });
整合分块
通过文件名找到对应文件分块目录,使用 fs.readdirSync(chunkDir)
方法获取对应目录下所以分块的命名,在通过 fs.createWriteStream/fs.createReadStream
创建可写/可读流,结合管道 pipe
将流整合在同一文件中,合并完成后通过 fs.rmdirSync(chunkDir)
删除对应分块目录。
// 合并请求 router.post('/mergeChunks', async (ctx) => { const { filename, size } = ctx.request.body; // 合并 chunks await mergeFileChunk(path.join(outputPath, '_' + filename), filename, size); // 处理响应 ctx.set("Content-Type", "application/json"); ctx.body = JSON.stringify({ data: { code: 2000, filename, size }, message: 'merge chunks successful!' }); }); // 通过管道处理流 const pipeStream = (path, writeStream) => { return new Promise(resolve => { const readStream = fs.createReadStream(path); readStream.pipe(writeStream); readStream.on("end", () => { fs.unlinkSync(path); resolve(); }); }); } // 合并切片 const mergeFileChunk = async (filePath, filename, size) => { const chunkDir = path.join(outputPath, filename); const chunkPaths = fs.readdirSync(chunkDir); if (!chunkPaths.length) return; // 根据切片下标进行排序,否则直接读取目录的获得的顺序可能会错乱 chunkPaths.sort((a, b) => a.split("-")[1] - b.split("-")[1]); console.log("chunkPaths = ", chunkPaths); await Promise.all( chunkPaths.map((chunkPath, index) => pipeStream( path.resolve(chunkDir, chunkPath), // 指定位置创建可写流 fs.createWriteStream(filePath, { start: index * size, end: (index + 1) * size }) ) ) ); // 合并后删除保存切片的目录 fs.rmdirSync(chunkDir); };
前端 & 服务端 交互
前端分块上传
测试文件信息:
选择文件类型为 19.8MB,而且上面设定默认分块大小为 5MB ,于是应该要分成 4 个分块,即 4 个请求。
服务端分块接收
前端发送合并请求
服务端合并分块
扩展 —— 断点续传 & 秒传
有了上面的核心逻辑之后,要实现断点续传和秒传的功能,只需要在取扩展即可,这里不再给出具体实现,只列出一些思路。
断点续传
断点续传其实就是让请求可中断,然后在接着上次中断的位置继续发送,此时要保存每个请求的实例对象,以便后期取消对应请求,并将取消的请求保存或者记录原始分块列表取消位置信息等,以便后期重新发起请求。
取消请求的几种方式:
如果使用原生 XHR 可使用 (new XMLHttpRequest()).abort()
取消请求
如果使用 axios 可使用 new CancelToken(function (cancel) {})
取消请求
如果使用 fetch 可使用 (new AbortController()).abort()
取消请求
秒传
不要被这个名字给误导了,其实所谓的秒传就是不用传,在正式发起上传请求时,先发起一个检查请求,这个请求会携带对应的文件 hash 给服务端,服务端负责查找是否存在一模一样的文件 hash,如果存在此时直接复用这个文件资源即可,不需要前端在发起额外的上传请求。
最后
前端分片上传的内容单纯从理论上来看其实还是容易理解的,但是实际自己去实现的时候还是会踩一些坑,比如服务端接收解析 formData 格式的数据时,没法获取文件的二进制数据等。
更多编程相关知识,请访问:编程视频!!