>데이터 베이스 >Redis >Redis를 사용하여 10억 단위 데이터 통계를 구현하는 방법을 단계별로 교육합니다(실전)

Redis를 사용하여 10억 단위 데이터 통계를 구현하는 방법을 단계별로 교육합니다(실전)

青灯夜游
青灯夜游앞으로
2021-08-09 10:43:185571검색

Redis를 사용하여 10억 단위 데이터 통계를 구현하는 방법을 단계별로 교육합니다(실전)

모바일 애플리케이션의 비즈니스 시나리오에서는 이러한 정보를 저장해야 합니다. 즉, 키는 데이터 컬렉션과 연결되어 있으며 동시에 컬렉션의 데이터를 통계적으로 정렬해야 합니다. [관련 권장 사항: Redis 비디오 튜토리얼]

일반적인 시나리오는 다음과 같습니다:

  • 사용자의 로그인 상태를 확인하기 위해 userId를 제공합니다.
  • 지난 7일 동안 2억 명의 사용자의 체크인 상태를 계산합니다. 7일 이내에 지속적으로 로그인한 총 사용자 수
  • 매일 추가된 신규 사용자 수와 다음날 유지된 사용자 수를 통계합니다.
  • 웹사이트의 고유 방문자 수(UV)를 통계합니다. 댓글 목록
  • 재생량에 따른 음악 목록
  • 보통 우리가 직면하는 사용자 수와 방문 수는 수백만, 수천만 명의 사용자, 수천만, 심지어 수십억 개의 접속 정보 등 거대합니다.

그래서 우리는 대량의 데이터(예: 수십억)를 매우 효율적으로 계산할 수 있는 컬렉션 유형을 선택해야 합니다.

적절한 데이터 세트를 선택하는 방법은 무엇입니까? 먼저 일반적으로 사용되는 통계 모델을 이해하고 합리적인 데이터 이해를 통해 실질적인 문제를 해결해야 합니다.

4가지 통계 유형:

    집계 통계
  • 카디널리티 통계;
  • 이 문서에서는
  • String, Set, Zset, List 및 hash

    이외의 확장 데이터 유형인 BitmapHyperLogLog 를 사용합니다.

  • 문서에 포함된 지침은 온라인 Redis 클라이언트(주소: try.redis.io/, 슈퍼 말하기 편리합니다.
  • Message

더 많이 공유하고 더 많이 주고, 초기 단계에서 다른 사람들을 위해 더 많은 가치를 창출하고 반품을 생각하지 마세요. 장기적으로 이러한 노력은 성과를 거둘 것이며 기하급수적으로 보답할 것입니다. BitmapHyperLogLog 来实现。

文章涉及到的指令可以通过在线 Redis 客户端运行调试,地址:try.redis.io/,超方便的说。

寄语

多分享多付出,前期多给别人创造价值并且不计回报,从长远来看,这些付出都会成倍的回报你。

特别是刚开始跟别人合作的时候,不要去计较短期的回报,没有太大意义,更多的是锻炼自己的视野、视角以及解决问题的能力。

二值状态统计

码哥,什么是二值状态统计呀?

也就是集合中的元素的值只有 0 和 1 两种,在签到打卡和用户是否登陆的场景中,只需记录签到(1)未签到(0)已登录(1)未登陆(0)

假如我们在判断用户是否登陆的场景中使用 Redis 的 String 类型实现(key -> userId,value -> 0 表示下线,1 - 登陆),假如存储 100 万个用户的登陆状态,如果以字符串的形式存储,就需要存储 100 万个字符串了,内存开销太大。

对于二值状态场景,我们就可以利用 Bitmap 来实现。比如登陆状态我们用一个 bit 位表示,一亿个用户也只占用 一亿 个 bit 位内存 ≈ (100000000 / 8/ 1024/1024)12 MB。

大概的空间占用计算公式是:($offset/8/1024/1024) MB

什么是 Bitmap 呢?

Bitmap 的底层数据结构用的是 String 类型的 SDS 数据结构来保存位数组,Redis 把每个字节数组的 8 个 bit 位利用起来,每个 bit 位 表示一个元素的二值状态(不是 0 就是 1)。

可以将 Bitmap 看成是一个 bit 为单位的数组,数组的每个单元只能存储 0 或者 1,数组的下标在 Bitmap 中叫做 offset 偏移量。

为了直观展示,我们可以理解成 buf 数组的每个字节用一行表示,每一行有 8 个 bit 位,8 个格子分别表示这个字节中的 8 个 bit 位,如下图所示:

Redis를 사용하여 10억 단위 데이터 통계를 구현하는 방법을 단계별로 교육합니다(실전)

8 个 bit 组成一个 Byte,所以 Bitmap 会极大地节省存储空间。 这就是 Bitmap 的优势。

判断用户登陆态

怎么用 Bitmap 来判断海量用户中某个用户是否在线呢?

Bitmap 提供了 GETBIT、SETBIT 操作,通过一个偏移值 offset 对 bit 数组的 offset 位置的 bit 位进行读写操作,需要注意的是 offset 从 0 开始。

只需要一个 key = login_status 表示存储用户登陆状态集合数据, 将用户 ID 作为 offset,在线就设置为 1,下线设置 0。通过 GETBIT특히 처음 협력을 시작할 때는 단기 수익에 대해 걱정하지 마세요. 자신의 비전, 관점, 문제 해결 능력을 발휘하는 것이 더 중요합니다.

이진 상태 통계

Ma 형제님, 이진 상태 통계가 무엇인가요?

즉, 컬렉션에 포함된 요소의 값은 0과 1뿐입니다. 체크인과 체크인 및 사용자 로그인 여부만 기록하면 됩니다. code>로그인(1) 또는 로그인되지 않음(0), 로그인됨(1) 또는 로그인되지 않음(0).

사용자가 로그인했는지 여부를 결정하는 시나리오에서 Redis의 문자열 유형 구현을 사용한다고 가정합니다(key -> userId, 값 -> 0은 오프라인, 1 - 로그인 을 의미함). 100만 명의 사용자 상황에서 문자열 형태로 저장한다면 100만 개의 문자열을 저장해야 하므로 메모리를 너무 많이 소모하게 됩니다.

🎜바이너리 상태 시나리오의 경우 비트맵을 사용하여 이를 달성할 수 있습니다. 예를 들어, 로그인 상태를 나타내기 위해 1비트를 사용하며, 1억 명의 사용자는 1억 비트의 메모리 ≒ (100000000 / 8/ 1024/1024) 12MB만 차지합니다. 🎜
SETBIT <key> <offset> <value></value></offset></key>
🎜비트맵이란 무엇인가요? 🎜
🎜Bitmap의 기본 데이터 구조는 문자열 유형 SDS 데이터 구조를 사용하여 비트 배열을 저장합니다. Redis는 각 바이트 배열의 8비트를 활용하며 각 비트는 요소의 이진 값(0 중 하나)을 나타냅니다. 또는 1). 🎜🎜비트맵은 비트 단위의 배열로 간주할 수 있습니다. 배열의 각 단위는 0 또는 1만 저장할 수 있습니다. 비트맵에서는 배열의 첨자를 오프셋이라고 합니다. 🎜🎜직관적인 표시를 위해 다음 그림과 같이 buf 배열의 각 바이트가 행으로 표시되고 각 행이 8비트를 가지며 8개의 그리드가 각각 이 바이트의 8비트를 나타낸다는 것을 이해할 수 있습니다. 🎜 🎜 Redis를 사용하여 10억 단위 데이터 통계를 구현하는 방법을 단계별로 교육합니다(실전)🎜🎜🎜8비트 Byte를 구성하므로 Bitmap은 저장 공간을 크게 절약합니다. 🎜 이것이 바로 비트맵의 장점입니다. 🎜🎜🎜사용자 로그인 상태 확인🎜🎜
🎜Bitmap을 사용하여 다수의 사용자 중 사용자가 온라인 상태인지 확인하는 방법은 무엇인가요? 🎜
🎜Bitmap은 오프셋 값 오프셋을 통해 비트 배열의 오프셋 위치에 있는 비트를 읽고 쓸 수 있는 GETBIT, SETBIT 작업을 제공합니다. 오프셋은 0부터 시작된다는 점에 유의하세요. 🎜🎜사용자 로그인 상태 수집 데이터를 저장하려면 하나의 키 = login_status만 필요합니다. 사용자 ID를 오프셋으로 사용하고 1은 온라인으로, 0은 오프라인으로 설정하세요. 해당 사용자가 온라인 상태인지 확인하려면 GETBIT를 사용하세요. 5억 명의 사용자에게는 6MB의 공간만 필요합니다. 🎜🎜🎜SETBIT 명령🎜🎜
GETBIT <key> <offset></offset></key>
🎜은 오프셋에서 키 값의 비트 값을 설정하거나 지웁니다(0 또는 1만 가능). 🎜🎜🎜GETBIT 명령🎜🎜
GETBIT <key> <offset></offset></key>

获取 key 的 value 在 offset 处的 bit 位的值,当 key 不存在时,返回 0。

假如我们要判断 ID = 10086 的用户的登陆情况:

第一步,执行以下指令,表示用户已登录。

SETBIT login_status 10086 1

第二步,检查该用户是否登陆,返回值 1 表示已登录。

GETBIT login_status 10086

第三步,登出,将 offset 对应的 value 设置成 0。

SETBIT login_status 10086 0

用户每个月的签到情况

在签到统计中,每个用户每天的签到用 1 个 bit 位表示,一年的签到只需要 365 个 bit 位。一个月最多只有 31 天,只需要 31 个 bit 位即可。

比如统计编号 89757 的用户在 2021 年 5 月份的打卡情况要如何进行?

key 可以设计成 uid:sign:{userId}:{yyyyMM},月份的每一天的值 - 1 可以作为 offset(因为 offset 从 0 开始,所以 offset = 日期 - 1)。

第一步,执行下面指令表示记录用户在 2021 年 5 月 16 号打卡。

SETBIT uid:sign:89757:202105 15 1

第二步,判断编号 89757 用户在 2021 年 5 月 16 号是否打卡。

GETBIT uid:sign:89757:202105 15

第三步,统计该用户在 5 月份的打卡次数,使用 BITCOUNT 指令。该指令用于统计给定的 bit 数组中,值 = 1 的 bit 位的数量。

BITCOUNT uid:sign:89757:202105

这样我们就可以实现用户每个月的打卡情况了,是不是很赞。

如何统计这个月首次打卡时间呢?

Redis 提供了 BITPOS key bitValue [start] [end]指令,返回数据表示 Bitmap 中第一个值为 bitValue 的 offset 位置。

在默认情况下, 命令将检测整个位图, 用户可以通过可选的 start 参数和 end 参数指定要检测的范围。

所以我们可以通过执行以下指令来获取 userID = 89757 在 2021 年 5 月份首次打卡日期:

BITPOS uid:sign:89757:202105 1

需要注意的是,我们需要将返回的 value + 1 表示首次打卡的天,因为 offset 从 0 开始。

连续签到用户总数

在记录了一个亿的用户连续 7 天的打卡数据,如何统计出这连续 7 天连续打卡用户总数呢?

我们把每天的日期作为 Bitmap 的 key,userId 作为 offset,若是打卡则将 offset 位置的 bit 设置成 1。

key 对应的集合的每个 bit 位的数据则是一个用户在该日期的打卡记录。

一共有 7 个这样的 Bitmap,如果我们能对这 7 个 Bitmap 的对应的 bit 位做 『与』运算。

同样的 UserID  offset 都是一样的,当一个 userID 在 7 个 Bitmap 对应对应的 offset 位置的 bit = 1 就说明该用户 7 天连续打卡。

结果保存到一个新 Bitmap 中,我们再通过 BITCOUNT 统计 bit = 1 的个数便得到了连续打卡 7 天的用户总数了。

Redis 提供了 BITOP operation destkey key [key ...]这个指令用于对一个或者多个 键 = key 的 Bitmap 进行位元操作。

opration 可以是 andORNOTXOR。当 BITOP 处理不同长度的字符串时,较短的那个字符串所缺少的部分会被当做 0

空的 key 也被看作是包含 0 的字符串序列。

便于理解,如下图所示:

Redis를 사용하여 10억 단위 데이터 통계를 구현하는 방법을 단계별로 교육합니다(실전)

3 个 Bitmap,对应的 bit 位做「与」操作,结果保存到新的 Bitmap 中。

操作指令表示将 三个 bitmap 进行 AND 操作,并将结果保存到 destmap 中。接着对 destmap 执行 BITCOUNT 统计。

// 与操作
BITOP AND destmap bitmap:01 bitmap:02 bitmap:03
// 统计 bit 位 =  1 的个数
BITCOUNT destmap

简单计算下 一个一亿个位的 Bitmap占用的内存开销,大约占 12 MB 的内存(10^8/8/1024/1024),7 天的 Bitmap 的内存开销约为 84 MB。同时我们最好给 Bitmap 设置过期时间,让 Redis 删除过期的打卡数据,节省内存

小结

思路才是最重要,当我们遇到的统计场景只需要统计数据的二值状态,比如用户是否存在、 ip 是否是黑名单、以及签到打卡统计等场景就可以考虑使用 Bitmap。

只需要一个 bit 位就能表示 0 和 1,在统计海量数据的时候将大大减少内存占用。

基数统计

基数统计:统计一个集合中不重复元素的个数,常见于计算独立用户数(UV)。

实现基数统计最直接的方法,就是采用集合(Set)这种数据结构,当一个元素从未出现过时,便在集合中增加一个元素;如果出现过,那么集合仍保持不变。

当页面访问量巨大,就需要一个超大的 Set 集合来统计,将会浪费大量空间。

另外,这样的数据也不需要很精确,到底有没有更好的方案呢?

这个问题问得好,Redis 提供了 HyperLogLog 数据结构就是用来解决种种场景的统计问题。

HyperLogLog 是一种不精确的去重基数方案,它的统计规则是基于概率实现的,标准误差 0.81%,这样的精度足以满足 UV 统计需求了。

关于 HyperLogLog 的原理过于复杂,如果想要了解的请移步:

  • https://www.zhihu.com/question/53416615
  • https://en.wikipedia.org/wiki/HyperLogLog

网站的 UV

通过 Set 实现

一个用户一天内多次访问一个网站只能算作一次,所以很容易就想到通过 Redis 的 Set 集合来实现。

用户编号 89757 访问 「Redis 为什么这么快 」时,我们将这个信息放到 Set 中。

SADD Redis为什么这么快:uv 89757

当用户编号 89757 多次访问「Redis 为什么这么快」页面,Set 的去重功能能保证不会重复记录同一个用户 ID。

通过 SCARD 命令,统计「Redis 为什么这么快」页面 UV。指令返回一个集合的元素个数(也就是用户 ID)。

SCARD Redis为什么这么快:uv

通过 Hash 实现

码老湿,还可以利用 Hash 类型实现,将用户 ID 作为 Hash 集合的 key,访问页面则执行 HSET 命令将 value 设置成 1。

即使用户重复访问,重复执行命令,也只会把这个 userId 的值设置成 “1"。

最后,利用 HLEN 命令统计 Hash 集合中的元素个数就是 UV。

如下:

HSET redis集群:uv userId:89757 1
// 统计 UV
HLEN redis集群

HyperLogLog 王者方案

码老湿,Set 虽好,如果文章非常火爆达到千万级别,一个 Set 就保存了千万个用户的 ID,页面多了消耗的内存也太大了。同理,Hash数据类型也是如此。咋办呢?

利用  Redis 提供的 HyperLogLog 高级数据结构(不要只知道 Redis 的五种基础数据类型了)。这是一种用于基数统计的数据集合类型,即使数据量很大,计算基数需要的空间也是固定的。

每个 HyperLogLog 最多只需要花费 12KB 内存就可以计算 2 的 64 次方个元素的基数。

Redis 对 HyperLogLog 的存储进行了优化,在计数比较小的时候,存储空间采用系数矩阵,占用空间很小。

只有在计数很大,稀疏矩阵占用的空间超过了阈值才会转变成稠密矩阵,占用 12KB 空间。

  • PFADD

将访问页面的每个用户 ID 添加到 HyperLogLog 中。

PFADD Redis主从同步原理:uv userID1 userID 2 useID3
  • PFCOUNT

利用 PFCOUNT 获取 「Redis主从同步原理」页面的 UV值。

PFCOUNT Redis主从同步原理:uv
  • PFMERGE 使用场景

HyperLogLog 除了上面的 PFADDPFCOIUNT 外,还提供了 PFMERGE ,将多个 HyperLogLog  合并在一起形成一个新的 HyperLogLog 值。

  • 语法

PFMERGE destkey sourcekey [sourcekey ...]
  • 使用场景

比如在网站中我们有两个内容差不多的页面,运营说需要这两个页面的数据进行合并。

其中页面的 UV 访问量也需要合并,那这个时候 PFMERGE 就可以派上用场了,也就是同样的用户访问这两个页面则只算做一次

如下所示:Redis、MySQL 两个 Bitmap 集合分别保存了两个页面用户访问数据。

PFADD Redis数据 user1 user2 user3
PFADD MySQL数据 user1 user2 user4
PFMERGE 数据库 Redis数据 MySQL数据
PFCOUNT 数据库 // 返回值 = 4

将多个 HyperLogLog 合并(merge)为一个 HyperLogLog , 合并后的 HyperLogLog 的基数接近于所有输入 HyperLogLog 的可见集合(observed set)的并集

user1、user2 都访问了 Redis 和 MySQL,只算访问了一次。

排序统计

Redis 的 4 个集合类型中(List、Set、Hash、Sorted Set),List 和 Sorted Set 就是有序的。

  • List:按照元素插入 List 的顺序排序,使用场景通常可以作为 消息队列、最新列表、排行榜;
  • Sorted Set:根据元素的 score 权重排序,我们可以自己决定每个元素的权重值。使用场景(排行榜,比如按照播放量、点赞数)。

最新评论列表

码老湿,我可以利用 List 插入的顺序排序实现评论列表

比如微信公众号的后台回复列表(不要杠,举例子),每一公众号对应一个 List,这个 List 保存该公众号的所有的用户评论。

每当一个用户评论,则利用 LPUSH key value [value ...] 插入到 List 队头。

LPUSH 码哥字节 1 2 3 4 5 6

接着再用 LRANGE key star stop 获取列表指定区间内的元素。

> LRANGE 码哥字节 0 4
1) "6"
2) "5"
3) "4"
4) "3"
5) "2"

注意,并不是所有最新列表都能用 List 实现,对于因为对于频繁更新的列表,list类型的分页可能导致列表元素重复或漏掉。

比如当前评论列表 List ={A, B, C, D},左边表示最新的评论,D 是最早的评论。

LPUSH 码哥字节 D C B A

展示第一页最新 2 个评论,获取到 A、B:

LRANGE 码哥字节 0 1
1) "A"
2) "B"

按照我们想要的逻辑来说,第二页可通过 LRANGE 码哥字节 2 3 获取 C,D。

如果在展示第二页之前,产生新评论 E,评论 E 通过 LPUSH 码哥字节 E 插入到 List 队头,List = {E, A, B, C, D }。

现在执行 LRANGE 码哥字节 2 3 获取第二页评论发现, B 又出现了。

LRANGE 码哥字节 2 3
1) "B"
2) "C"

出现这种情况的原因在于 List 是利用元素所在的位置排序,一旦有新元素插入,List  = {E,A,B,C,D}

原先的数据在 List 的位置都往后移动一位,导致读取都旧元素。

Redis를 사용하여 10억 단위 데이터 통계를 구현하는 방법을 단계별로 교육합니다(실전)

小结

只有不需要分页(比如每次都只取列表的前 5 个元素)或者更新频率低(比如每天凌晨统计更新一次)的列表才适合用 List 类型实现。

对于需要分页并且会频繁更新的列表,需用使用有序集合 Sorted Set 类型实现。

另外,需要通过时间范围查找的最新列表,List 类型也实现不了,需要通过有序集合 Sorted Set 类型实现,如以成交时间范围作为条件来查询的订单列表。

排行榜

码老湿,对于最新列表的场景,List 和 Sorted Set 都能实现,为啥还用 List 呢?直接使用 Sorted Set 不是更好,它还能设置 score 权重排序更加灵活。

原因是 Sorted Set 类型占用的内存容量是 List 类型的数倍之多,对于列表数量不多的情况,可以用 Sorted Set 类型来实现。

比如要一周音乐榜单,我们需要实时更新播放量,并且需要分页展示。

除此以外,排序是根据播放量来决定的,这个时候 List 就无法满足了。

我们可以将音乐 ID 保存到 Sorted Set 集合中,score 设置成每首歌的播放量,该音乐每播放一次则设置 score = score +1。

  • ZADD

比如我们将《青花瓷》和《花田错》播放量添加到 musicTop 集合中:

ZADD musicTop 100000000 青花瓷 8999999 花田错
  • ZINCRBY

《青花瓷》每播放一次就通过 ZINCRBY指令将 score + 1。

> ZINCRBY musicTop 1 青花瓷
100000001
  • ZRANGEBYSCORE

最后我们需要获取 musicTop 前十播放量音乐榜单,目前最大播放量是 N ,可通过如下指令获取:

ZRANGEBYSCORE musicTop N-9 N WITHSCORES

65哥:可是这个 N 我们怎么获取呀?

  • ZREVRANGE

可通过 ZREVRANGE key start stop [WITHSCORES]指令。

其中元素的排序按 score 值递减(从大到小)来排列。

具有相同 score 值的成员按字典序的逆序(reverse lexicographical order)排列。

> ZREVRANGE musicTop 0 0 WITHSCORES
1) "青花瓷"
2) 100000000

小结

即使集合中的元素频繁更新,Sorted Set 也能通过 ZRANGEBYSCORE 命令准确地获取到按序排列的数据。

在面对需要展示最新列表、排行榜等场景时,如果数据更新频繁或者需要分页显示,建议优先考虑使用 Sorted Set。

聚合统计

指的就是统计多个集合元素的聚合结果,比如说:

  • 统计多个元素的共有数据(交集);
  • 统计两个集合其中的一个独有元素(差集统计);
  • 统计多个集合的所有元素(并集统计)。

码老湿,什么样的场景会用到交集、差集、并集呢?

Redis 的 Set 类型支持集合内的增删改查,底层使用了 Hash 数据结构,无论是 add、remove 都是 O(1) 时间复杂度。

并且支持多个集合间的交集、并集、差集操作,利用这些集合操作,解决上边提到的统计问题。

交集-共同好友

比如 QQ 中的共同好友正是聚合统计中的交集。我们将账号作为 Key,该账号的好友作为 Set 集合的 value。

模拟两个用户的好友集合:

SADD user:码哥字节 R大 Linux大神 PHP之父
SADD user:大佬 Linux大神 Python大神 C++菜鸡

Redis를 사용하여 10억 단위 데이터 통계를 구현하는 방법을 단계별로 교육합니다(실전)

统计两个用户的共同好友只需要两个 Set 集合的交集,如下命令:

SINTERSTORE user:共同好友 user:码哥字节 user:大佬

命令的执行后,「user:码哥字节」、「user:大佬」两个集合的交集数据存储到 user:共同好友这个集合中。

差集-每日新增好友数

比如,统计某个 App 每日新增注册用户量,只需要对近两天的总注册用户量集合取差集即可。

比如,2021-06-01 的总注册用户量存放在 key = user:20210601 set 集合中,2021-06-02 的总用户量存放在 key = user:20210602 的集合中。

Redis를 사용하여 10억 단위 데이터 통계를 구현하는 방법을 단계별로 교육합니다(실전)

如下指令,执行差集计算并将结果存放到 user:new 集合中。

SDIFFSTORE  user:new  user:20210602 user:20210601

执行完毕,此时的 user:new 集合将是 2021/06/02 日新增用户量。

除此之外,QQ 上有个可能认识的人功能,也可以使用差集实现,就是把你朋友的好友集合减去你们共同的好友即是可能认识的人。

并集-总共新增好友

还是差集的例子,统计 2021/06/01 和 2021/06/02 两天总共新增的用户量,只需要对两个集合执行并集。

SUNIONSTORE  userid:new user:20210602 user:20210601

此时新的集合 userid:new 则是两日新增的好友。

小结

Set 的差集、并集和交集的计算复杂度较高,在数据量较大的情况下,如果直接执行这些计算,会导致 Redis 实例阻塞。

所以,可以专门部署一个集群用于统计,让它专门负责聚合计算,或者是把数据读取到客户端,在客户端来完成聚合统计,这样就可以规避由于阻塞导致其他服务无法响应。

更多编程相关知识,请访问:编程视频!!

위 내용은 Redis를 사용하여 10억 단위 데이터 통계를 구현하는 방법을 단계별로 교육합니다(실전)의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

성명:
이 기사는 juejin.cn에서 복제됩니다. 침해가 있는 경우 admin@php.cn으로 문의하시기 바랍니다. 삭제