버블 정렬의 시간 복잡도: 최선의 경우는 "O(n)"이고 최악의 경우는 "O(n2)"입니다. 퀵 정렬의 시간 복잡도: 최선의 경우는 "O(nlogn)"이고 최악의 경우는 "O(n2)"입니다. 힙 정렬의 시간 복잡도는 "O(nlogn)"입니다.
이 튜토리얼의 운영 환경: Windows 7 시스템, Dell G3 컴퓨터.
시간 복잡성
최상의 사례: 배열 자체는 순차적이며 외부 루프는 O(n)
O(n)
最坏的情况:数组本身是逆序的,内外层遍历O(n2)
空间复杂度
开辟一个空间交换顺序O(1)
稳定性稳定
,因为if判断不成立,就不会交换顺序,不会交换相同元素
冒泡排序它在所有排序算法中最简单。然而, 从运行时间的角度来看,冒泡排序是最差的一个,它的复杂度是O(n2)。
冒泡排序比较任何两个相邻的项,如果第一个比第二个大,则交换它们。元素项向上移动至正确的顺序,就好像气泡升至表面一样,冒泡排序因此得名。
交换时,我们用一个中间值来存储某一交换项的值。其他排序法也会用到这个方法,因此我 们声明一个方法放置这段交换代码以便重用。使用ES6(ECMAScript 2015)**增强的对象属性——对象数组的解构赋值语法,**这个函数可以写成下面 这样:
[array[index1], array[index2]] = [array[index2], array[index1]];
具体实现:
function bubbleSort(arr) { for (let i = 0; i < arr.length; i++) {//外循环(行{2})会从数组的第一位迭代 至最后一位,它控制了在数组中经过多少轮排序 for (let j = 0; j < arr.length - i; j++) {//内循环将从第一位迭代至length - i位,因为后i位已经是排好序的,不用重新迭代 if (arr[j] > arr[j + 1]) {//如果前一位大于后一位 [arr[j], arr[j + 1]] = [arr[j + 1], arr[j]];//交换位置 } } } return arr; }
时间复杂度
最好的情况:每一次base值都刚好平分整个数组,O(nlogn)
最坏的情况:每一次base值都是数组中的最大/最小值,O(n2)
空间复杂度
快速排序是递归的,需要借助栈来保存每一层递归的调用信息,所以空间复杂度和递归树的深度一致
最好的情况:每一次base值都刚好平分整个数组,递归树的深度O(logn)
最坏的情况:每一次base值都是数组中的最大/最小值,递归树的深度O(n)
稳定性
快速排序是不稳定
的,因为可能会交换相同的关键字。
快速排序是递归的,
特殊情况:left>right,直接退出。
步骤:
(1) 首先,从数组中选择中间一项作为主元base,一般取第一个值。
(2) 创建两个指针,左边一个指向数组第一个项,右边一个指向数组最后一个项。移动右指针直到找到一个比主元小的元素,接着,移动左指 针直到我们找到一个比主元大的元素,然后交 换它们,重复这个过程,直到左指针遇见了右指针。这个过程将使得比主元小的值都排在主元之前,而比主元大的值都排在主元之后。这一步叫作划分操作。
(3)然后交换主元和指针停下来的位置的元素(等于说是把这个元素归位,这个元素左边的都比他小,右边的都比他大,这个位置就是他最终的位置)
(4) 接着,算法对划分后的小数组(较主元小的值组成的子数组,以及较主元大的值组成的 子数组)重复之前的两个步骤(递归方法),
递归的出口为left/right=i
을 완료하기 위해 한 번 순회됩니다.
O(n2)
Space Complexity
공간 교환 시퀀스 O(1)
생성
안정성
안정적
, 판단이 사실이 아닐 경우 순서가 바뀌지 않고, 같은 요소도 바뀌지 않기 때문입니다
거품이 표면으로 떠오르는
것처럼 항목이 올바른 순서로 위로 이동하므로 이름이 버블 정렬입니다. 🎜left>i-1 / i+1>right🎜특정 구현: 🎜
function quicksort(arr, left, right) { if (left > right) { return; } var i = left, j = right, base = arr[left]; //基准总是取序列开头的元素 // var [base, i, j] = [arr[left], left, right]; //以left指针元素为base while (i != j) { //i=j,两个指针相遇时,一次排序完成,跳出循环 // 因为每次大循环里面的操作都会改变i和j的值,所以每次循环/操作前都要判断是否满足i<j>= base) { //寻找小于base的右指针元素a,跳出循环,否则左移一位 j--; } while (i 🎜빠른 정렬🎜 🎜 🎜시간 복잡도🎜🎜 가장 좋은 경우: 기본 값이 전체 배열과 정확히 동일할 때마다 <code>O(nlogn)</code>🎜 최악의 경우: 기본 값이 배열의 최대값일 때마다 / 최소값, <code>O(n2)</code>🎜🎜🎜공간 복잡도🎜🎜 퀵 정렬은 재귀적이며 각 재귀 수준의 호출 정보를 저장하기 위해 스택을 사용해야 하므로 공간 복잡도와 깊이가 🎜 최선의 경우: 기본 값이 전체 배열과 정확히 동일할 때마다 재귀 트리의 깊이는 <code>O(logn)</code>🎜 최악의 경우: 기본 값이 항상 는 배열 값의 최대/최소이고 재귀 트리의 깊이는 <code>O(n)</code>🎜🎜🎜stability🎜🎜입니다. 빠른 정렬은 <code>불안정</code>합니다. 교환됩니다. 🎜 퀵 정렬은 재귀적입니다. 🎜 특별한 경우: 왼쪽>오른쪽, 직접 종료합니다. 🎜🎜🎜단계: 🎜🎜🎜(1) 먼저 배열에서 중간 항목을 🎜pivot🎜 베이스로 선택하고 일반적으로 🎜첫 번째 값🎜을 사용합니다. 🎜🎜(2) 🎜두 개의 포인터🎜를 만듭니다. 왼쪽 포인터는 배열의 첫 번째 항목을 가리키고 오른쪽 포인터는 배열의 마지막 항목을 가리킵니다. 🎜피벗보다 작은 요소🎜를 찾을 때까지 오른쪽 포인터를 이동한 다음 피벗보다 큰 요소🎜를 찾을 때까지 🎜왼쪽 포인터를 이동한 다음 🎜교체🎜하고 왼쪽 포인터가 오른쪽과 만날 때까지 이 과정을 반복합니다. 포인터. 이 프로세스를 수행하면 피벗보다 작은 값이 피벗 앞에 정렬되고 피벗보다 큰 값이 피벗 뒤에 정렬됩니다. 이 단계를 🎜파티션 작업🎜이라고 합니다. 🎜🎜(3) 그런 다음 🎜 피벗 요소와 포인터가 멈춘 위치에서 요소 🎜를 교환합니다(이는 이 요소 🎜를 해당 위치 🎜로 되돌리는 것과 같습니다. 이 요소의 왼쪽에 있는 요소는 그것보다 작습니다. 오른쪽에 있는 요소가 그것보다 큽니다. 이 위치가 그의 최종 위치입니다.🎜🎜(4) 그런 다음 알고리즘은 이전 두 단계를 반복합니다( 🎜재귀 방법🎜), 🎜🎜재귀 종료는 왼쪽/오른쪽입니다. =i, 즉: 🎜<pre class="brush:js;toolbar:false;">// 建立大顶堆 function buildHeap(arr) { //从最后一个非叶子节点开始,向前遍历, for (let i = Math.floor(arr.length / 2 - 1); i >= 0; i--) { headAdjust(arr, i, arr.length); //对每一个节点都调整堆,使其满足大顶堆规则 } }🎜이 시점에서 하위 배열 배열이 정렬되었습니다. 🎜🎜 원점 복귀 다이어그램: 🎜🎜🎜🎜 구체적인 구현: 🎜
//从输入节点处调整堆 function headAdjust(arr, cur, len) { let intialCur = arr[cur]; //存放最初始的 let childMax = 2 * cur + 1; //指向子树中较大的位置,初始值为左子树的索引 //子树存在(索引没超过数组长度)而且子树值大于根时,此时不符合大顶堆结构,进入循环,调整堆的结构 while (childMax < len) { //判断左右子树大小,如果右子树更大,而且右子树存在,childMax指针指向右子树 if (arr[childMax] < arr[childMax + 1] && childMax + 1 < len) childMax++; //子树值小于根节点,不需要调整,退出循环 if (arr[childMax] < arr[cur]) break; //子树值大于根节点,需要调整,先交换根节点和子节点 swap(arr, childMax, cur); cur = childMax; //根节点指针指向子节点,检查子节点是否满足大顶堆规则 childMax = 2 * cur + 1; //子节点指针指向新的子节点 } }🎜 참조: https://www.cnblogs.com/venoral/p/5180439.html🎜🎜🎜Heap sort🎜🎜🎜힙의 개념🎜
时间复杂度
总时间为建堆时间
+n次调整堆
—— O(n)+O(nlogn)=O(nlogn)
建堆时间
:从最后一个非叶子节点遍历到根节点,复杂度为O(n)
n次调整堆
:每一次调整堆最长的路径是从树的根节点到叶子结点,也就是树的高度logn
,所以每一次调整时间复杂度是O(logn)
,一共是O(nlogn)
空间复杂度
堆排序只需要在交换元素的时候申请一个空间暂存元素,其他操作都是在原数组操作,空间复杂度为O(1)
稳定性
堆排序是不稳定
的,因为可能会交换相同的子结点。
步骤一:建堆
树中任一非叶子结点大于其左右孩子
。Math.floor(arr.length / 2 - 1)
,从后往前依次遍历// 建立大顶堆 function buildHeap(arr) { //从最后一个非叶子节点开始,向前遍历, for (let i = Math.floor(arr.length / 2 - 1); i >= 0; i--) { headAdjust(arr, i, arr.length); //对每一个节点都调整堆,使其满足大顶堆规则 } }
步骤二:调整指定结点形成大根堆
childMax
指针指向child最大值节点,初始值为2 * cur + 1
,指向左节点length
),进入循环,递归调整所有节点位置,直到没有左节点
为止(cur
指向一个叶结点为止),跳出循环,遍历结束cur
和childMax
指向子结点,继续循环判断。//从输入节点处调整堆 function headAdjust(arr, cur, len) { let intialCur = arr[cur]; //存放最初始的 let childMax = 2 * cur + 1; //指向子树中较大的位置,初始值为左子树的索引 //子树存在(索引没超过数组长度)而且子树值大于根时,此时不符合大顶堆结构,进入循环,调整堆的结构 while (childMax < len) { //判断左右子树大小,如果右子树更大,而且右子树存在,childMax指针指向右子树 if (arr[childMax] < arr[childMax + 1] && childMax + 1 < len) childMax++; //子树值小于根节点,不需要调整,退出循环 if (arr[childMax] < arr[cur]) break; //子树值大于根节点,需要调整,先交换根节点和子节点 swap(arr, childMax, cur); cur = childMax; //根节点指针指向子节点,检查子节点是否满足大顶堆规则 childMax = 2 * cur + 1; //子节点指针指向新的子节点 } }
步骤三:利用堆进行排序
a[0]
和当前元素a[i]
的位置,将最大值依次放入数组末尾。根节点~i-1
个节点(数组长度为i
),重新生成大顶堆// 堆排序 function heapSort(arr) { if (arr.length <= 1) return arr; //构建大顶堆 buildHeap(arr); //从后往前遍历, for (let i = arr.length - 1; i >= 0; i--) { swap(arr, i, 0); //交换最后位置和第一个位置(堆顶最大值)的位置 headAdjust(arr, 0, i); //调整根节点~i-1个节点,重新生成大顶堆 } return arr; }
完整代码:
// 交换数组元素 function swap(a, i, j) { [a[i], a[j]] = [a[j], a[i]]; } //从输入节点处调整堆 function headAdjust(arr, cur, len) { let intialCur = arr[cur]; //存放最初始的 let childMax = 2 * cur + 1; //指向子树中较大的位置,初始值为左子树的索引 //子树存在(索引没超过数组长度)而且子树值大于根时,此时不符合大顶堆结构,进入循环,调整堆的结构 while (childMax < len) { //判断左右子树大小,如果右子树更大,而且右子树存在,childMax指针指向右子树 if (arr[childMax] < arr[childMax + 1] && childMax + 1 < len) childMax++; //子树值小于根节点,不需要调整,退出循环 if (arr[childMax] < arr[cur]) break; //子树值大于根节点,需要调整,先交换根节点和子节点 swap(arr, childMax, cur); cur = childMax; //根节点指针指向子节点,检查子节点是否满足大顶堆规则 childMax = 2 * cur + 1; //子节点指针指向新的子节点 } } // 建立大顶堆 function buildHeap(arr) { //从最后一个非叶子节点开始,向前遍历, for (let i = Math.floor(arr.length / 2 - 1); i >= 0; i--) { headAdjust(arr, i, arr.length); //对每一个节点都调整堆,使其满足大顶堆规则 } } // 堆排序 function heapSort(arr) { if (arr.length <= 1) return arr; //构建大顶堆 buildHeap(arr); //从后往前遍历, for (let i = arr.length - 1; i >= 0; i--) { swap(arr, i, 0); //交换最后位置和第一个位置(堆顶最大值)的位置 headAdjust(arr, 0, i); //调整根节点~i-1个节点,重新生成大顶堆 } return arr; }
更多编程相关知识,请访问:编程视频!!
위 내용은 버블정렬, 퀵정렬, 힙정렬의 시간복잡도는 어떻게 되나요?의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!