>백엔드 개발 >Golang >golang 문자열과 []byte 비교에 대한 자세한 설명

golang 문자열과 []byte 비교에 대한 자세한 설명

藏色散人
藏色散人앞으로
2021-01-14 17:19:503006검색

다음 튜토리얼 칼럼인 golang에서는 golang 문자열과 []byte의 비교 및 ​​차이점을 소개하겠습니다. 도움이 필요한 친구들에게 도움이 되길 바랍니다!

golang 문자열과 []byte 비교에 대한 자세한 설명

golang 문자열과 []byte

비교 문자열과 []바이트 유형 변환에 특정 비용이 필요한 이유는 무엇입니까?

내장 함수에 특별한 경우가 있는 이유는 무엇입니까? copycopy(dst []byte, src string) int?
String과 []byte는 모두 최하위 계층의 배열인데 왜 []byte가 string보다 유연하고 접합 성능이 더 높은가요?(동적 문자열 접합 성능 비교) copy(dst []byte, src string) int?
string和[]byte,底层都是数组,但为什么[]byte比string灵活,拼接性能也更高(动态字符串拼接性能对比)?

今天看了源码探究了一下。
以下所有观点都是个人愚见,有不同建议或补充的的欢迎emial我aboutme

何为string?

什么是字符串?标准库builtin的解释:

type string

string is the set of all strings of 8-bit bytes, conventionally but not necessarily representing UTF-8-encoded text. A string may be empty, but not nil. Values of string type are immutable.

简单的来说字符串是一系列8位字节的集合,通常但不一定代表UTF-8编码的文本。字符串可以为空,但不能为nil。而且字符串的值是不能改变的。
不同的语言字符串有不同的实现,在go的源码中src/runtime/string.go,string的定义如下:

type stringStruct struct {
    str unsafe.Pointer
    len int}

可以看到str其实是个指针,指向某个数组的首地址,另一个字段是len长度。那到这个数组是什么呢? 在实例化这个stringStruct的时候:

func gostringnocopy(str *byte) string {
	ss := stringStruct{str: unsafe.Pointer(str), len: findnull(str)}
	s := *(*string)(unsafe.Pointer(&ss))	return s
}

哈哈,其实就是byte数组,而且要注意string其实就是个struct。

何为[]byte?

首先在go里面,byte是uint8的别名。而slice结构在go的源码中src/runtime/slice.go

오늘 소스 코드를 읽고 살펴보았습니다. 그것.
다음 의견은 모두 저의 소소한 의견입니다. 다른 제안이나 추가 사항이 있으면 저에게 이메일을 보내주세요🎜🎜🎜문자열이 무엇인가요? 🎜🎜🎜문자열이란 무엇인가요? 표준 라이브러리내장 설명: 🎜
type slice struct {	array unsafe.Pointer
	len   int
	cap   int}
🎜간단히 말하면 문자열은 8비트 바이트의 모음이지만 일반적으로 반드시 UTF-8로 인코딩된 텍스트를 나타낼 필요는 없습니다. 문자열은 비어 있을 수 있지만 nil은 될 수 없습니다. 그리고 문자열의 값은 변경할 수 없습니다.
다른 언어 문자열은 다른 구현을 갖습니다. go의 소스 코드에서는 src/runtime/string.go string의 정의는 다음과 같습니다. 🎜
s := "A1" // 分配存储"A1"的内存空间,s结构体里的str指针指向这快内存
s = "A2"  // 重新给"A2"的分配内存空间,s结构体里的str指针指向这快内存
🎜 str은 실제로 배열의 첫 번째 주소를 가리키는 포인터이고 다른 필드는 len의 길이임을 알 수 있습니다. 그렇다면 이 배열은 무엇일까요? 이 stringStruct를 인스턴스화할 때: 🎜
s := []byte{1} // 分配存储1数组的内存空间,s结构体的array指针指向这个数组。s = []byte{2}  // 将array的内容改为2
🎜Haha, 이는 실제로 바이트 배열이며 string은 실제로 구조체라는 점에 유의해야 합니다. 🎜

[]byte란 무엇입니까?🎜🎜먼저 go에서 byte는 uint8의 별칭입니다. . 슬라이스 구조는 소스 코드 gosrc/runtime/slice.go정의: 🎜

type slice struct {	array unsafe.Pointer
	len   int
	cap   int}

array是数组的指针,len表示长度,cap表示容量。除了cap,其他看起来和string的结构很像。
但其实他们差别真的很大。

区别

字符串的值是不能改变

在前面说到了字符串的值是不能改变的,这句话其实不完整,应该说字符串的值不能被更改,但可以被替换。 还是以string的结构体来解释吧,所有的string在底层都是这样的一个结构体stringStruct{str: str_point, len: str_len},string结构体的str指针指向的是一个字符常量的地址, 这个地址里面的内容是不可以被改变的,因为它是只读的,但是这个指针可以指向不同的地址,我们来对比一下string、[]byte类型重新赋值的区别:

s := "A1" // 分配存储"A1"的内存空间,s结构体里的str指针指向这快内存
s = "A2"  // 重新给"A2"的分配内存空间,s结构体里的str指针指向这快内存

其实[]byte和string的差别是更改变量的时候array的内容可以被更改。

s := []byte{1} // 分配存储1数组的内存空间,s结构体的array指针指向这个数组。s = []byte{2}  // 将array的内容改为2

因为string的指针指向的内容是不可以更改的,所以每更改一次字符串,就得重新分配一次内存,之前分配空间的还得由gc回收,这是导致string操作低效的根本原因。

string和[]byte的相互转换

将string转为[]byte,语法[]byte(string)源码如下:

func stringtoslicebyte(buf *tmpBuf, s string) []byte {	var b []byte
	if buf != nil && len(s) <= len(buf) {
		*buf = tmpBuf{}
		b = buf[:len(s)]
	} else {
		b = rawbyteslice(len(s))
	}
	copy(b, s)	return b
}func rawstring(size int) (s string, b []byte) {
	p := mallocgc(uintptr(size), nil, false)

	stringStructOf(&s).str = p	stringStructOf(&s).len = size

	*(*slice)(unsafe.Pointer(&b)) = slice{p, size, size}	return}

可以看到b是新分配的,然后再将s复制给b,至于为啥copy函数可以直接把string复制给[]byte,那是因为go源码单独实现了一个slicestringcopy函数来实现,具体可以看src/runtime/slice.go

将[]byte转为string,语法string([]byte)源码如下:

func slicebytetostring(buf *tmpBuf, b []byte) string {
	l := len(b)	if l == 0 {		// Turns out to be a relatively common case.
		// Consider that you want to parse out data between parens in "foo()bar",
		// you find the indices and convert the subslice to string.
		return ""
	}	if raceenabled && l > 0 {
		racereadrangepc(unsafe.Pointer(&b[0]),
			uintptr(l),
			getcallerpc(unsafe.Pointer(&buf)),
			funcPC(slicebytetostring))
	}	if msanenabled && l > 0 {
		msanread(unsafe.Pointer(&b[0]), uintptr(l))
	}
	s, c := rawstringtmp(buf, l)
	copy(c, b)	return s
}func rawstringtmp(buf *tmpBuf, l int) (s string, b []byte) {	if buf != nil && l <= len(buf) {
		b = buf[:l]
		s = slicebytetostringtmp(b)
	} else {
		s, b = rawstring(l)
	}	return}

依然可以看到s是新分配的,然后再将b复制给s。
正因为string和[]byte相互转换都会有新的内存分配,才导致其代价不小,但读者千万不要误会,对于现在的机器来说这些代价其实不值一提。 但如果想要频繁string和[]byte相互转换(仅假设),又不会有新的内存分配,能有办法吗?答案是有的。

package string_slicebyte_testimport (	"log"
	"reflect"
	"testing"
	"unsafe")func stringtoslicebyte(s string) []byte {
	sh := (*reflect.StringHeader)(unsafe.Pointer(&s))
	bh := reflect.SliceHeader{
		Data: sh.Data,
		Len:  sh.Len,
		Cap:  sh.Len,
	}	return *(*[]byte)(unsafe.Pointer(&bh))
}func slicebytetostring(b []byte) string {
	bh := (*reflect.SliceHeader)(unsafe.Pointer(&b))
	sh := reflect.StringHeader{
		Data: bh.Data,
		Len:  bh.Len,
	}	return *(*string)(unsafe.Pointer(&sh))
}func TestStringSliceByte(t *testing.T) {
	s1 := "abc"
	b1 := []byte("def")
	copy(b1, s1)
	log.Println(s1, b1)

	s := "hello"
	b2 := stringtoslicebyte(s)
	log.Println(b2)    // b2[0] = byte(99) unexpected fault address

	b3 := []byte("test")
	s3 := slicebytetostring(b3)
	log.Println(s3)
}

答案虽然有,但强烈推荐不要使用这种方法来转换类型,因为如果通过stringtoslicebyte将string转为[]byte的时候,共用的时同一块内存,原先的string内存区域是只读的,一但更改将会导致整个进程down掉,而且这个错误是runtime没法恢复的。

如何取舍?

既然string就是一系列字节,而[]byte也可以表达一系列字节,那么实际运用中应当如何取舍?

  • string可以直接比较,而[]byte不可以,所以[]byte不可以当map的key值。
  • 因为无法修改string中的某个字符,需要粒度小到操作一个字符时,用[]byte。
  • string值不可为nil,所以如果你想要通过返回nil表达额外的含义,就用[]byte。
  • []byte切片这么灵活,想要用切片的特性就用[]byte。
  • 需要大量字符串处理的时候用[]byte,性能好很多。

最后脱离场景谈性能都是耍流氓,需要根据实际场景来抉择。

更多golang相关技术文章,请访问go语言栏目!

위 내용은 golang 문자열과 []byte 비교에 대한 자세한 설명의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

성명:
이 기사는 cnblogs.com에서 복제됩니다. 침해가 있는 경우 admin@php.cn으로 문의하시기 바랍니다. 삭제