'디스크립터'라는 개념을 자주 들어보셨겠지만, 대부분의 프로그래머들은 거의 사용하지 않기 때문에 그 원리를 명확하게 이해하지 못할 수도 있습니다. python 동영상 튜토리얼 칼럼에서 자세히 소개하겠습니다. ):
python 비디오 튜토리얼하지만 경력을 쌓고 Python 사용에 더욱 능숙해지고 싶다면 여전히 설명자를 해야 한다고 생각합니다. 여러분의 향후 개발에 큰 도움이 될 것이며, 향후 Python 디자인에 대해 더 깊이 이해하는 데도 도움이 될 것입니다. 개발 과정에서 디스크립터를 직접 사용하지는 않았지만, 하위 레벨에서는 매우 자주 사용됩니다. 예를 들어 다음과 같습니다:
함수
, 바운드 메서드
, 언바운드 메서드
staticmethod
, classmethod
모두 익숙하신가요?
사실 이들은 설명자와 불가분하게 연결되어 있습니다. 다음 기사를 통해 설명자의 작동 원리를 살펴보겠습니다.
描述符
的这个概念有一个清晰的了解,这对于你以后的发展有着巨大的帮助,也有利于你将来更深层次的python设计的理解。
尽管在开发的过程中,我们没有直接的使用过描述符,但是它在底层的运用却是十分频繁的存在。例如下面的这些:
function
、bound method
、unbound method
property
、staticmethod
、classmethod
什么是描述符?
在我们了解什么是描述符前,我们可以先找一个例子来看一下
class A: x = 10print(A.x) # 10
这个例子很简单,我们先在类A
中定义一个类属性x
,然后得出它的值。
除了这种直接定义类属性的方法外,我们还可以这样去定义一个类属性:
class Ten: def __get__(self, obj, objtype=None): return 10class A: x = Ten() # 属性换成了一个类print(A.x) # 10
我们可以发现,这回的类属性x
不是一个具体的值了,而是一个类Ten
,通过这个Ten
定义了一个__get__
方法,返回具体的值。
因此可得出:在python中,我们可以把一个类的属性,托管给一个类,而这样的属性就是一个描述符
简而言之,描述符
是一个绑定行为
属性
而这又有着什么意思呢?
回想,我们在开发时,一般情况下,会将行为
叫做什么?行为
即一个方法。
所以我们也可以将描述符
理解为:对象的属性并非一个具体的值,而是交给了一个方法去定义。
可以想像一下,如果我们用一个方法去定义一个属性,这么做有什么好处?
有了方法,我们就可以在方法内实现自己的逻辑,最简单的,我们可以根据不同的条件,在方法内给属性赋予不同的值,就像下面这样:
class Age: def __get__(self, obj, objtype=None): if obj.name == 'zhangsan': return 20 elif obj.name == 'lisi': return 25 else: return ValueError("unknow")class Person: age = Age() def __init__(self, name): self.name = name p1 = Person('zhangsan')print(p1.age) # 20p2 = Person('lisi')print(p2.age) # 25p3 = Person('wangwu')print(p3.age) # unknow
这个例子中,age
类属性被另一个类托管了,在这个类的 __get__
中,它会根据 Person
类的属性 name
,决定 age
是什么值。
通过这样一个例子,我们可以看到,通过描述符的使用,我们可以轻易地改变一个类属性的定义方式。
描述符协议
了解了描述符的定义,现在我们把重点放到托管属性的类上。
其实,一个类属性想要托管给一个类,这个类内部实现的方法不能是随便定义的,它必须遵守「描述符协议」,也就是要实现以下几个方法:
__get__(self, obj, type=None) -> value
__set__(self, obj, value) -> None
__delete__(self, obj) -> None
只要是实现了以上几个方法的其中一个,那么这个类属性就可以称作描述符。
另外,描述符又可以分为「数据描述符」和「非数据描述符」:
__get___
,叫做非数据描述符__get__
之外,还定义了 __set__
或 __delete__
,叫做数据描述符它们两者有什么区别,我会在下面详述。
现在我们来看一个包含 __get__
和 __set__
方法的描述符例子:
# coding: utf8class Age: def __init__(self, value=20): self.value = value def __get__(self, obj, type=None): print('call __get__: obj: %s type: %s' % (obj, type)) return self.value def __set__(self, obj, value): if value <= 0: raise ValueError("age must be greater than 0") print('call __set__: obj: %s value: %s' % (obj, value)) self.value = valueclass Person: age = Age() def __init__(self, name): self.name = name p1 = Person('zhangsan')print(p1.age)# call __get__: obj: <__main__.Person object at 0x1055509e8> type: <class '__main__.Person'># 20print(Person.age)# call __get__: obj: None type: <class '__main__.Person'># 20p1.age = 25# call __set__: obj: <__main__.Person object at 0x1055509e8> value: 25print(p1.age)# call __get__: obj: <__main__.Person object at 0x1055509e8> type: <class '__main__.Person'># 25p1.age = -1# ValueError: age must be greater than 0
在这例子中,类属性 age
是一个描述符,它的值取决于 Age
类。
从输出结果来看,当我们获取或修改 age
属性时,调用了 Age
的 __get__
和 __set__
def getattr_hook(obj, name): try: return obj.__getattribute__(name) except AttributeError: if not hasattr(type(obj), '__getattr__'): raise return type(obj).__getattr__(obj, name)🎜이 예제는 매우 간단합니다. 먼저 🎜class 속성🎜
A
>x를 선택한 다음 해당 값을 가져옵니다. # 获取一个对象的属性 def __getattribute__(obj, name): null = object() # 对象的类型 也就是实例的类 objtype = type(obj) # 从这个类中获取指定属性 cls_var = getattr(objtype, name, null) # 如果这个类实现了描述符协议 descr_get = getattr(type(cls_var), '__get__', null) if descr_get is not null: if (hasattr(type(cls_var), '__set__') or hasattr(type(cls_var), '__delete__')): # 优先从数据描述符中获取属性 return descr_get(cls_var, obj, objtype) # 从实例中获取属性 if hasattr(obj, '__dict__') and name in vars(obj): return vars(obj)[name] # 从非数据描述符获取属性 if descr_get is not null: return descr_get(cls_var, obj, objtype) # 从类中获取属性 if cls_var is not null: return cls_var # 抛出 AttributeError 会触发调用 __getattr__ raise AttributeError(name)🎜이번에는 클래스 속성
x
가 특정 값이 아니라는 것을 알 수 있습니다. 대신 Ten
클래스입니다. 이 Ten
은 특정 값을 반환하는 __get__
메서드를 정의합니다. 🎜🎜결론은 다음과 같습니다. Python에서는 🎜클래스의 속성을 클래스에 호스팅할 수 있으며 이러한 속성은 설명자
🎜설명자입니다.
는 바인딩 동작
속성입니다🎜🎜이게 무슨 뜻인가요? 행동
을 무엇이라고 부르나요? 행동
은 메소드입니다. 🎜🎜그래서 descriptor
를 다음과 같이 이해할 수도 있습니다. 🎜객체의 속성은 특정 값이 아니라 메서드에 의해 정의됩니다. 🎜🎜🎜속성을 정의하는 방법을 사용하면 어떤 이점이 있는지 상상할 수 있습니까? 🎜🎜메서드를 사용하면 메서드 내에서 자체 논리를 구현할 수 있습니다. 가장 간단한 방법은 다음과 같이 다양한 조건에 따라 메서드 내의 속성에 다양한 값을 할당할 수 있다는 것입니다. code>age 클래스 속성은 이 클래스의 __get__
에서 호스팅되며 Person
클래스 속성 name
을 기반으로 합니다. >는 age
값이 무엇인지 결정합니다. 🎜🎜이러한 예를 통해 설명자를 사용하면 클래스 속성이 정의되는 방식을 쉽게 변경할 수 있음을 알 수 있습니다. 🎜🎜🎜설명자 프로토콜🎜🎜🎜설명자의 정의를 이해했으므로 이제 관리 속성 클래스에 중점을 둡니다. 🎜🎜실제로 클래스 속성을 클래스에서 호스팅하려면 이 클래스 내부에 구현된 메서드를 임의로 정의할 수 없습니다. 즉, 다음 메서드를 구현해야 합니다. 🎜__get__(self, obj, type=None) -> 값
__set__(self, obj, value) -> > li>__delete__(self, obj) -> None
__get___
만 정의됩니다. li >__get__
정의 외에도 __set__
또는 __delete__
도 정의되어 데이터 설명자라고 합니다.__get__
및 __set__
메서드가 포함된 설명자의 예를 살펴보겠습니다. 🎜type(a).__dict__['b'].__get__(a, type(a))复制代码🎜이 예에서 클래스 속성
age
는 값이 Age
클래스에 따라 달라지는 설명자입니다. 🎜🎜출력 결과에 따르면 age
속성을 얻거나 수정할 때 Age
의 __get__
및 __set__이 호출됩니다. 코드> 방법: 🎜<ul>
<li>当调用 <code>p1.age
时,__get__
被调用,参数 obj
是 Person
实例,type
是 type(Person)
Person.age
时,__get__
被调用,参数 obj
是 None
,type
是 type(Person)
p1.age = 25
时,__set__
被调用,参数 obj
是 Person
实例,value
是25p1.age = -1
时,__set__
没有通过校验,抛出 ValueError
其中,调用 __set__
传入的参数,我们比较容易理解,但是对于 __get__
方法,通过类或实例调用,传入的参数是不同的,这是为什么?
这就需要我们了解一下描述符的工作原理。
描述符的工作原理
要解释描述符的工作原理,首先我们需要先从属性的访问说起。
在开发时,不知道你有没有想过这样一个问题:通常我们写这样的代码 a.b
,其背后到底发生了什么?
这里的 a
和 b
可能存在以下情况:
a
可能是一个类,也可能是一个实例,我们这里统称为对象b
可能是一个属性,也可能是一个方法,方法其实也可以看做是类的属性其实,无论是以上哪种情况,在 Python 中,都有一个统一的调用逻辑:
__getattribute__
尝试获得结果__getattr__
用代码表示就是下面这样:
def getattr_hook(obj, name): try: return obj.__getattribute__(name) except AttributeError: if not hasattr(type(obj), '__getattr__'): raise return type(obj).__getattr__(obj, name)
我们这里需要重点关注一下 __getattribute__
,因为它是所有属性查找的入口,它内部实现的属性查找顺序是这样的:
__get__
__dict__
中查找__dict__
中查找不到,再看它是否是一个非数据描述符__get__
AttributeError
异常写成代码就是下面这样:
# 获取一个对象的属性 def __getattribute__(obj, name): null = object() # 对象的类型 也就是实例的类 objtype = type(obj) # 从这个类中获取指定属性 cls_var = getattr(objtype, name, null) # 如果这个类实现了描述符协议 descr_get = getattr(type(cls_var), '__get__', null) if descr_get is not null: if (hasattr(type(cls_var), '__set__') or hasattr(type(cls_var), '__delete__')): # 优先从数据描述符中获取属性 return descr_get(cls_var, obj, objtype) # 从实例中获取属性 if hasattr(obj, '__dict__') and name in vars(obj): return vars(obj)[name] # 从非数据描述符获取属性 if descr_get is not null: return descr_get(cls_var, obj, objtype) # 从类中获取属性 if cls_var is not null: return cls_var # 抛出 AttributeError 会触发调用 __getattr__ raise AttributeError(name)
如果不好理解,你最好写一个程序测试一下,观察各种情况下的属性的查找顺序。
到这里我们可以看到,在一个对象中查找一个属性,都是先从 __getattribute__
开始的。
在 __getattribute__
中,它会检查这个类属性是否是一个描述符,如果是一个描述符,那么就会调用它的 __get__
方法。但具体的调用细节和传入的参数是下面这样的:
a
是一个实例,调用细节为:type(a).__dict__['b'].__get__(a, type(a))复制代码
a
是一个类,调用细节为:a.__dict__['b'].__get__(None, a)复制代码
所以我们就能看到上面例子输出的结果。
数据描述符和非数据描述符
了解了描述符的工作原理,我们继续来看数据描述符和非数据描述符的区别。
从定义上来看,它们的区别是:
__get___
,叫做非数据描述符__get__
之外,还定义了 __set__
或 __delete__
,叫做数据描述符此外,我们从上面描述符调用的顺序可以看到,在对象中查找属性时,数据描述符要优先于非数据描述符调用。
在之前的例子中,我们定义了 __get__
和 __set__
,所以那些类属性都是数据描述符。
我们再来看一个非数据描述符的例子:
class A: def __init__(self): self.foo = 'abc' def foo(self): return 'xyz'print(A().foo) # 输出什么? 复制代码
这段代码,我们定义了一个相同名字的属性和方法 foo
,如果现在执行 A().foo
,你觉得会输出什么结果?
答案是 abc
。
为什么打印的是实例属性 foo
的值,而不是方法 foo
呢?
这就和非数据描述符有关系了。
我们执行 dir(A.foo)
,观察结果:
print(dir(A.foo))# [... '__get__', '__getattribute__', ...]复制代码
看到了吗?A
的 foo
方法其实实现了 __get__
,我们在上面的分析已经得知:只定义 __get__
方法的对象,它其实是一个非数据描述符,也就是说,我们在类中定义的方法,其实本身就是一个非数据描述符。
所以,在一个类中,如果存在相同名字的属性和方法,按照上面所讲的 __getattribute__
中查找属性的顺序,这个属性就会优先从实例中获取,如果实例中不存在,才会从非数据描述符中获取,所以在这里优先查找的是实例属性 foo
的值。
到这里我们可以总结一下关于描述符的相关知识点:
__getattribute__
是查找一个属性(方法)的入口__getattribute__
定义了一个属性(方法)的查找顺序:数据描述符、实例属性、非数据描述符、类属性__getattribute__
方法,会阻止描述符的调用__get__
描述符的使用场景
了解了描述符的工作原理,那描述符一般用在哪些业务场景中呢?
在这里我用描述符实现了一个属性校验器,你可以参考这个例子,在类似的场景中去使用它。
首先我们定义一个校验基类 Validator
,在 __set__
方法中先调用 validate
方法校验属性是否符合要求,然后再对属性进行赋值。
class Validator: def __init__(self): self.data = {} def __get__(self, obj, objtype=None): return self.data[obj] def __set__(self, obj, value): # 校验通过后再赋值 self.validate(value) self.data[obj] = value def validate(self, value): pass 复制代码
接下来,我们定义两个校验类,继承 Validator
,然后实现自己的校验逻辑。
class Number(Validator): def __init__(self, minvalue=None, maxvalue=None): super(Number, self).__init__() self.minvalue = minvalue self.maxvalue = maxvalue def validate(self, value): if not isinstance(value, (int, float)): raise TypeError(f'Expected {value!r} to be an int or float') if self.minvalue is not None and value < self.minvalue: raise ValueError( f'Expected {value!r} to be at least {self.minvalue!r}' ) if self.maxvalue is not None and value > self.maxvalue: raise ValueError( f'Expected {value!r} to be no more than {self.maxvalue!r}' )class String(Validator): def __init__(self, minsize=None, maxsize=None): super(String, self).__init__() self.minsize = minsize self.maxsize = maxsize def validate(self, value): if not isinstance(value, str): raise TypeError(f'Expected {value!r} to be an str') if self.minsize is not None and len(value) < self.minsize: raise ValueError( f'Expected {value!r} to be no smaller than {self.minsize!r}' ) if self.maxsize is not None and len(value) > self.maxsize: raise ValueError( f'Expected {value!r} to be no bigger than {self.maxsize!r}' )复制代码
最后,我们使用这个校验类:
class Person: # 定义属性的校验规则 内部用描述符实现 name = String(minsize=3, maxsize=10) age = Number(minvalue=1, maxvalue=120) def __init__(self, name, age): self.name = name self.age = age # 属性符合规则 p1 = Person('zhangsan', 20)print(p1.name, p1.age)# 属性不符合规则 p2 = person('a', 20)# ValueError: Expected 'a' to be no smaller than 3p3 = Person('zhangsan', -1)# ValueError: Expected -1 to be at least 1复制代码
现在,当我们对 Person
实例进行初始化时,就可以校验这些属性是否符合预定义的规则了。
function与method
我们再来看一下,在开发时经常看到的 function
、unbound method
、bound method
它们之间到底有什么区别?
来看下面这段代码:
class A: def foo(self): return 'xyz'print(A.__dict__['foo']) # <function foo at 0x10a790d70>print(A.foo) # <unbound method A.foo>print(A().foo) # <bound method A.foo of <__main__.A object at 0x10a793050>>复制代码
从结果我们可以看出它们的区别:
function
准确来说就是一个函数,并且它实现了 __get__
方法,因此每一个 function
都是一个非数据描述符,而在类中会把 function
放到 __dict__
中存储function
被实例调用时,它是一个 bound method
function
被类调用时, 它是一个 unbound method
function
是一个非数据描述符,我们之前已经讲到了。
而 bound method
和 unbound method
的区别就在于调用方的类型是什么,如果是一个实例,那么这个 function
就是一个 bound method
,否则它是一个 unbound method
。
property/staticmethod/classmethod
我们再来看 property
、staticmethod
、classmethod
。
这些装饰器的实现,默认是 C 来实现的。
其实,我们也可以直接利用 Python 描述符的特性来实现这些装饰器,
property
的 Python 版实现:
class property: def __init__(self, fget=None, fset=None, fdel=None, doc=None): self.fget = fget self.fset = fset self.fdel = fdel self.__doc__ = doc def __get__(self, obj, objtype=None): if obj is None: return self.fget if self.fget is None: raise AttributeError(), "unreadable attribute" return self.fget(obj) def __set__(self, obj, value): if self.fset is None: raise AttributeError, "can't set attribute" return self.fset(obj, value) def __delete__(self, obj): if self.fdel is None: raise AttributeError, "can't delete attribute" return self.fdel(obj) def getter(self, fget): return type(self)(fget, self.fset, self.fdel, self.__doc__) def setter(self, fset): return type(self)(self.fget, fset, self.fdel, self.__doc__) def deleter(self, fdel): return type(self)(self.fget, self.fset, fdel, self.__doc__)复制代码
staticmethod
的 Python 版实现:
class staticmethod: def __init__(self, func): self.func = func def __get__(self, obj, objtype=None): return self.func 复制代码
classmethod
的 Python 版实现:
class classmethod: def __init__(self, func): self.func = func def __get__(self, obj, klass=None): if klass is None: klass = type(obj) def newfunc(*args): return self.func(klass, *args) return newfunc 复制代码
除此之外,你还可以实现其他功能强大的装饰器。
由此可见,通过描述符我们可以实现强大而灵活的属性管理功能,对于一些要求属性控制比较复杂的场景,我们可以选择用描述符来实现。
总结
这篇文章我们主要讲了 Python 描述符的工作原理。
首先,我们从一个简单的例子了解到,一个类属性是可以托管给另外一个类的,这个类如果实现了描述符协议方法,那么这个类属性就是一个描述符。此外,描述符又可以分为数据描述符和非数据描述符。
之后我们又分析了获取一个属性的过程,一切的入口都在 __getattribute__
中,这个方法定义了寻找属性的顺序,其中实例属性优先于数据描述符调用,数据描述符要优先于非数据描述符调用。
또한 메소드가 실제로는 데이터 디스크립터가 아니라는 것도 배웠습니다. __getattribute__
의 속성 검색 순서에 따라 클래스에 동일한 이름의 인스턴스 속성과 메소드를 정의하면 인스턴스 속성이 먼저 액세스됩니다. __getattribute__
中的属性查找顺序,实例属性优先访问。
最后我们分析了 function
和 method
的区别,以及使用 Python 描述符也可以实现 property
、staticmethod
、classmethod
함수
와 메서드
의 차이점을 분석하고 Python 설명자를 사용하여 속성
과 정적 메서드
를 구현했습니다. , classmethod
데코레이터. Python 설명자는 강력한 속성 액세스 제어 기능을 제공하며 복잡한 속성 제어가 필요한 시나리오에서 이를 사용할 수 있습니다. 이 작품은 "CC 라이선스"를 채택하고 있으며, 재인쇄 시 작성자와 이 글의 링크를 명시해야 합니다🎜위 내용은 Python 설명자의 의미 소개의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!