>백엔드 개발 >파이썬 튜토리얼 >Python의 고전적인 알고리즘은 무엇입니까?

Python의 고전적인 알고리즘은 무엇입니까?

coldplay.xixi
coldplay.xixi원래의
2020-10-28 09:39:065505검색

Python의 기본 알고리즘에는 1. 삽입 정렬, 3. 선택 정렬, 5. 병합 정렬, 7. 기수 정렬 등이 있습니다.

Python의 고전적인 알고리즘은 무엇입니까?

관련 무료 학습 권장 사항: python 튜토리얼(동영상)

고전 Python 알고리즘은 다음과 같습니다. 외부 정렬, 내부 정렬 데이터 레코드는 메모리에 정렬되는 반면, 외부 정렬은 정렬된 데이터가 매우 크고 정렬된 모든 레코드를 한 번에 수용할 수 없기 때문에 정렬 프로세스 중에 외부 메모리에 액세스해야 합니다. 일반적인 내부 정렬 알고리즘에는 삽입 정렬, 힐 정렬, 선택 정렬, 버블 정렬, 병합 정렬, 퀵 정렬, 힙 정렬, 기수 정렬 등이 포함됩니다. 그림으로 요약:

시간 복잡도 정보:

제곱 순서(O(n2)) 정렬 다양한 유형의 단순 정렬: 직접 삽입, 직접 선택 및 버블 정렬.
  1. 선형 로그 순서(O(nlog2n)) 정렬 빠른 정렬, 힙 정렬 및 병합 정렬.
  2. O(n1+§)) 순서, §는 0과 1 사이의 상수입니다. 힐 정렬.
  3. 버킷 및 빈 정렬 외에 선형 순서(O(n)) 정렬, 기수 정렬.
  4. 안정성 정보:
안정적인 정렬 알고리즘: 버블 정렬, 삽입 정렬, 병합 정렬 및 기수 정렬.

안정적인 정렬 알고리즘이 아닙니다: 선택 정렬, 퀵 정렬, 힐 정렬, 힙 정렬.

용어 설명:

n: 데이터 규모

k: "버킷" 수

In-place: 추가 메모리 없이 일정한 메모리를 차지합니다.

Out-place: 추가 메모리를 차지합니다.

안정성: 정렬 마지막 두 개의 동일한 키 값의 순서는 정렬 전의 순서와 동일합니다. 버블 정렬도 간단하고 직관적인 정렬 알고리즘입니다. 정렬할 시퀀스를 반복적으로 살펴보며 한 번에 두 요소를 비교하고 순서가 잘못된 경우 교체합니다. 더 이상 교환이 필요하지 않을 때까지 어레이 방문 작업이 반복됩니다. 이는 어레이가 정렬되었음을 의미합니다. 이 알고리즘의 이름은 작은 요소가 스와핑을 통해 배열의 맨 위로 천천히 "부동"된다는 사실에서 유래되었습니다.

가장 간단한 정렬 알고리즘 중 하나인 버블 정렬은 단어장에 Abandon이 나오는 것과 같은 느낌을 주기 때문에 매번 첫 페이지에 1위를 차지해서 가장 친숙합니다. 플래그를 설정하는 버블 정렬을 위한 또 다른 최적화 알고리즘이 있습니다. 이는 시퀀스 탐색 중에 요소가 교환되지 않으면 시퀀스가 ​​올바른지 증명합니다. 그러나 이러한 개선은 성능 향상에 큰 도움이 되지 않습니다.

1. 알고리즘 단계

인접 요소를 비교합니다. 첫 번째 것이 두 번째 것보다 크면 둘 다 교환하세요.

인접 요소의 각 쌍에 대해 동일한 작업을 수행합니다. 시작 부분의 첫 번째 쌍부터 시작하여 끝 부분의 마지막 쌍으로 끝납니다. 이 단계가 완료되면 최종 요소가 가장 큰 숫자가 됩니다.

마지막 요소를 제외한 모든 요소에 대해 위 단계를 반복합니다.

  1. 비교할 숫자 쌍이 더 이상 없을 때까지 매번 요소 수를 줄여 위 단계를 계속 반복하세요.

  2. 2. 애니메이션 데모
  3. 3. Python 코드 구현

    def bubbleSort(arr):    for i in range(1, len(arr)):        for j in range(0, len(arr)-i):            if arr[j] > arr[j+1]:                arr[j], arr[j + 1] = arr[j + 1], arr[j]    return arr

    선택 정렬은 어떤 데이터가 들어와도 간단하고 직관적인 정렬 알고리즘입니다. O(n²) 시간 복잡도. 따라서 사용할 때에는 데이터 크기가 작을수록 좋습니다. 유일한 장점은 추가 메모리 공간을 차지하지 않는다는 것입니다.

    1. 알고리즘 단계

    먼저 정렬되지 않은 시퀀스에서 가장 작은(큰) 요소를 찾아 정렬된 시퀀스의 시작 위치에 저장합니다.

    그런 다음 계속해서 다음에서 가장 작은(큰) 요소를 찾습니다. 정렬되지 않은 나머지 요소 요소를 정렬된 순서의 끝에 배치합니다.

    모든 요소가 정렬될 때까지 두 번째 단계를 반복합니다.

    2. GIF 데모
    1. 3. Python 코드 구현

    2. def selectionSort(arr):    for i in range(len(arr) - 1):        # 记录最小数的索引        minIndex = i        for j in range(i + 1, len(arr)):            if arr[j] < arr[minIndex]:                minIndex = j        # i 不是最小数时,将 i 和最小数进行交换        if i != minIndex:            arr[i], arr[minIndex] = arr[minIndex], arr[i]    return arr

    삽입 정렬

    插入排序的代码实现虽然没有冒泡排序和选择排序那么简单粗暴,但它的原理应该是最容易理解的了,因为只要打过扑克牌的人都应该能够秒懂。插入排序是一种最简单直观的排序算法,它的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。

    插入排序和冒泡排序一样,也有一种优化算法,叫做拆半插入。

    1. 算法步骤

    1. 将第一待排序序列第一个元素看做一个有序序列,把第二个元素到最后一个元素当成是未排序序列。

    2. 从头到尾依次扫描未排序序列,将扫描到的每个元素插入有序序列的适当位置。(如果待插入的元素与有序序列中的某个元素相等,则将待插入元素插入到相等元素的后面。)

    2. 动图演示

    3. Python 代码实现

    def insertionSort(arr):    for i in range(len(arr)):        preIndex = i-1        current = arr[i]        while preIndex >= 0 and arr[preIndex] > current:            arr[preIndex+1] = arr[preIndex]            preIndex-=1        arr[preIndex+1] = current    return arr

     

    希尔排序

     

    希尔排序,也称递减增量排序算法,是插入排序的一种更高效的改进版本。但希尔排序是非稳定排序算法。

    希尔排序是基于插入排序的以下两点性质而提出改进方法的:

  • 插入排序在对几乎已经排好序的数据操作时,效率高,即可以达到线性排序的效率;

  • 但插入排序一般来说是低效的,因为插入排序每次只能将数据移动一位;

希尔排序的基本思想是:先将整个待排序的记录序列分割成为若干子序列分别进行直接插入排序,待整个序列中的记录“基本有序”时,再对全体记录进行依次直接插入排序。

1. 算法步骤

  1. 选择一个增量序列 t1,t2,……,tk,其中 ti > tj, tk = 1;

  2. 按增量序列个数 k,对序列进行 k 趟排序;

  3. 每趟排序,根据对应的增量 ti,将待排序列分割成若干长度为 m 的子序列,分别对各子表进行直接插入排序。仅增量因子为 1 时,整个序列作为一个表来处理,表长度即为整个序列的长度。

2. Python 代码实现

def shellSort(arr):    import math    gap=1    while(gap < len(arr)/3):        gap = gap*3+1    while gap > 0:        for i in range(gap,len(arr)):            temp = arr[i]            j = i-gap            while j >=0 and arr[j] > temp:                arr[j+gap]=arr[j]                j-=gap            arr[j+gap] = temp        gap = math.floor(gap/3)    return arr

 

归并排序

 

归并排序(Merge sort)是建立在归并操作上的一种有效的排序算法。该算法是采用分治法(pide and Conquer)的一个非常典型的应用。

作为一种典型的分而治之思想的算法应用,归并排序的实现由两种方法:

  • 自上而下的递归(所有递归的方法都可以用迭代重写,所以就有了第 2 种方法);

  • 自下而上的迭代;

在《数据结构与算法 JavaScript 描述》中,作者给出了自下而上的迭代方法。但是对于递归法,作者却认为:

However, it is not possible to do so in JavaScript, as the recursion goes too deep for the language to handle.

然而,在 JavaScript 中这种方式不太可行,因为这个算法的递归深度对它来讲太深了。

说实话,我不太理解这句话。意思是 JavaScript 编译器内存太小,递归太深容易造成内存溢出吗?还望有大神能够指教。

和选择排序一样,归并排序的性能不受输入数据的影响,但表现比选择排序好的多,因为始终都是 O(nlogn) 的时间复杂度。代价是需要额外的内存空间。

1. 算法步骤

  1. 申请空间,使其大小为两个已经排序序列之和,该空间用来存放合并后的序列;

  2. 设定两个指针,最初位置分别为两个已经排序序列的起始位置;

  3. 比较两个指针所指向的元素,选择相对小的元素放入到合并空间,并移动指针到下一位置;

  4. 重复步骤 3 直到某一指针达到序列尾;

  5. 将另一序列剩下的所有元素直接复制到合并序列尾。

2. 动图演示

 

 

3. Python 代码实现

def mergeSort(arr):    import math    if(len(arr)<2):        return arr    middle = math.floor(len(arr)/2)    left, right = arr[0:middle], arr[middle:]    return merge(mergeSort(left), mergeSort(right))def merge(left,right):    result = []    while left and right:        if left[0] <= right[0]:            result.append(left.pop(0));        else:            result.append(right.pop(0));    while left:        result.append(left.pop(0));    while right:        result.append(right.pop(0));    return result

快速排序

快速排序是由东尼·霍尔所发展的一种排序算法。在平均状况下,排序 n 个项目要 Ο(nlogn) 次比较。在最坏状况下则需要 Ο(n2) 次比较,但这种状况并不常见。事实上,快速排序通常明显比其他 Ο(nlogn) 算法更快,因为它的内部循环(inner loop)可以在大部分的架构上很有效率地被实现出来。

快速排序使用分治法(pide and conquer)策略来把一个串行(list)分为两个子串行(sub-lists)。

快速排序又是一种分而治之思想在排序算法上的典型应用。本质上来看,快速排序应该算是在冒泡排序基础上的递归分治法。

快速排序的名字起的是简单粗暴,因为一听到这个名字你就知道它存在的意义,就是快,而且效率高!它是处理大数据最快的排序算法之一了。虽然 Worst Case 的时间复杂度达到了 O(n²),但是人家就是优秀,在大多数情况下都比平均时间复杂度为 O(n logn) 的排序算法表现要更好,可是这是为什么呢,我也不知道。好在我的强迫症又犯了,查了 N 多资料终于在《算法艺术与信息学竞赛》上找到了满意的答案:

快速排序的最坏运行情况是 O(n²),比如说顺序数列的快排。但它的平摊期望时间是 O(nlogn),且 O(nlogn) 记号中隐含的常数因子很小,比复杂度稳定等于 O(nlogn) 的归并排序要小很多。所以,对绝大多数顺序性较弱的随机数列而言,快速排序总是优于归并排序。

1. 算法步骤

  1. 从数列中挑出一个元素,称为 “基准”(pivot);

  2. 重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分区退出之后,该基准就处于数列的中间位置。这个称为分区(partition)操作;

  3. 递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序;

递归的最底部情形,是数列的大小是零或一,也就是永远都已经被排序好了。虽然一直递归下去,但是这个算法总会退出,因为在每次的迭代(iteration)中,它至少会把一个元素摆到它最后的位置去。

2. 动图演示

3. Python 代码实现

def quickSort(arr, left=None, right=None):    left = 0 if not isinstance(left,(int, float)) else left    right = len(arr)-1 if not isinstance(right,(int, float)) else right    if left < right:        partitionIndex = partition(arr, left, right)        quickSort(arr, left, partitionIndex-1)        quickSort(arr, partitionIndex+1, right)    return arrdef partition(arr, left, right):    pivot = left    index = pivot+1    i = index    while  i <= right:        if arr[i] < arr[pivot]:            swap(arr, i, index)            index+=1        i+=1    swap(arr,pivot,index-1)    return index-1def swap(arr, i, j):    arr[i], arr[j] = arr[j], arr[i]

堆排序

堆排序(Heapsort)是指利用堆这种数据结构所设计的一种排序算法。堆积是一个近似完全二叉树的结构,并同时满足堆积的性质:即子结点的键值或索引总是小于(或者大于)它的父节点。堆排序可以说是一种利用堆的概念来排序的选择排序。分为两种方法:

  1. 大顶堆:每个节点的值都大于或等于其子节点的值,在堆排序算法中用于升序排列;

  2. 小顶堆:每个节点的值都小于或等于其子节点的值,在堆排序算法中用于降序排列;

堆排序的平均时间复杂度为 Ο(nlogn)。

1. 算法步骤

  1. 创建一个堆 H[0……n-1];

  2. 把堆首(最大值)和堆尾互换;

  3. 把堆的尺寸缩小 1,并调用 shift_down(0),目的是把新的数组顶端数据调整到相应位置;

  4. 重复步骤 2,直到堆的尺寸为 1。

2. 动图演示

3. Python 代码实现

def buildMaxHeap(arr):    import math    for i in range(math.floor(len(arr)/2),-1,-1):        heapify(arr,i)def heapify(arr, i):    left = 2*i+1    right = 2*i+2    largest = i    if left < arrLen and arr[left] > arr[largest]:        largest = left    if right < arrLen and arr[right] > arr[largest]:        largest = right    if largest != i:        swap(arr, i, largest)        heapify(arr, largest)def swap(arr, i, j):    arr[i], arr[j] = arr[j], arr[i]def heapSort(arr):    global arrLen    arrLen = len(arr)    buildMaxHeap(arr)    for i in range(len(arr)-1,0,-1):        swap(arr,0,i)        arrLen -=1        heapify(arr, 0)    return arr

 

计数排序

 

计数排序的核心在于将输入的数据值转化为键存储在额外开辟的数组空间中。作为一种线性时间复杂度的排序,计数排序要求输入的数据必须是有确定范围的整数。

1. 动图演示

 

 

 

2. Python 代码实现

def countingSort(arr, maxValue):    bucketLen = maxValue+1    bucket = [0]*bucketLen    sortedIndex =0    arrLen = len(arr)    for i in range(arrLen):        if not bucket[arr[i]]:            bucket[arr[i]]=0        bucket[arr[i]]+=1    for j in range(bucketLen):        while bucket[j]>0:            arr[sortedIndex] = j            sortedIndex+=1            bucket[j]-=1    return arr

 

桶排序

桶排序是计数排序的升级版。它利用了函数的映射关系,高效与否的关键就在于这个映射函数的确定。为了使桶排序更加高效,我们需要做到这两点:

  1. 在额外空间充足的情况下,尽量增大桶的数量

  2. 使用的映射函数能够将输入的 N 个数据均匀的分配到 K 个桶中

同时,对于桶中元素的排序,选择何种比较排序算法对于性能的影响至关重要。

1. 什么时候最快

当输入的数据可以均匀的分配到每一个桶中。

 

2. 什么时候最慢

当输入的数据被分配到了同一个桶中。

 

 

基数排序

基数排序是一种非比较型整数排序算法,其原理是将整数按位数切割成不同的数字,然后按每个位数分别比较。由于整数也可以表达字符串(比如名字或日期)和特定格式的浮点数,所以基数排序也不是只能使用于整数。

1. 基数排序 vs 计数排序 vs 桶排序

 

基数排序有两种方法:

这三种排序算法都利用了桶的概念,但对桶的使用方法上有明显差异:

  • 基数排序:根据键值的每位数字来分配桶;

  • 计数排序:每个桶只存储单一键值;

  • 桶排序:每个桶存储一定范围的数值;

 

2. LSD 基数排序动图演示

 

위 내용은 Python의 고전적인 알고리즘은 무엇입니까?의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

성명:
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.