집 >데이터 베이스 >MySQL 튜토리얼 >연습(2)--MySQL 성능 최적화
관련 학습 권장사항: mysql 튜토리얼
이전 기사 "연습(1)--MySQL 성능 최적화"에서는 데이터베이스 테이블 설계의 몇 가지 원칙, 설명 도구 소개, SQL 문에 대한 인덱스 최적화 모범 사례에 대해 설명했습니다. 기사 계속 MySQL에서 적절한 인덱스를 선택하는 방법에 대해 이야기해 보겠습니다.
MySQL이 결국 인덱스를 사용하도록 선택하는지 아니면 테이블에 여러 인덱스가 포함되어 있는지, 그리고 결국 인덱스를 선택하는 방법은 추적 도구를 사용하여 알아볼 수 있습니다. MySQL의 성능에 영향을 미치므로 일시적으로만 분석할 수 있으며, 사용 후 즉시 종료하십시오.
추적 도구에 대해 이야기하기 전에 먼저 사례를 살펴보겠습니다.
# 示例表CREATE TABLE`employees`(`id` int(11) NOT NULL AUTO_INCREMENT,`name` varchar(24) NOT NULL DEFAULT '' COMMENT '姓名',`age` int(11) NOT NULL DEFAULT '0' COMMENT '年龄',`position` varchar(20) NOT NULL DEFAULT '' COMMENT '职位',`hire_time` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP COMMENT '入职时间', PRIMARY KEY (`id`), KEY `idx_name_age_position` (`name`,`age`,`position`) USING BTREE )ENGINE=InnoDB AUTO_INCREMENT=4 DEFAULT CHARSET=utf8 COMMENT='员工记录表'; INSERT INTO employees(name,age,position,hire_time)VALUES('ZhangSan',23,'Manager',NOW());INSERT INTO employees(name,age,position,hire_time)VALUES('HanMeimei', 23,'dev',NOW());INSERT INTO employees(name,age,position,hire_time) VALUES('Lucy',23,'dev',NOW());复制代码
MySQL에 적합한 인덱스를 선택하는 방법
EXPLAIN select * from employees where name > 'a';复制代码
이름 인덱스를 사용하는 경우 트래버스가 필요합니다. 이름 필드 조인트 인덱스 트리를 탐색한 다음 최종 데이터를 찾기 위해 순회된 기본 키 값을 기본 키 인덱스 트리에 입력해야 합니다. 전체 테이블 스캔을 사용하여 최적화하는 것보다 비용이 더 많이 듭니다. 따라서 모든 결과를 얻으려면 name 필드의 공동 인덱스 트리만 순회하면 됩니다. code> 및 name>'zzz'
, mysql이 궁극적으로 인덱스를 사용하도록 선택할지 아니면 테이블에 여러 인덱스가 포함되는지 여부를 알아내기 위해 MySQL이 최종적으로 인덱스를 어떻게 선택합니까? 추적 도구를 켜면 MySQL의 성능에 영향을 미치므로 일시적으로 SQL 사용량을 분석하고 사용 후 즉시 종료할 수 있습니다.
#开启traceset session optimizer_trace="enabled=on",end_markers_in_json=on; #关闭traceset session optimizer_trace="enabled=off";复制代码
name>'a'
和 name>'zzz'
的执行结果,mysql最终是否选择走索引或者一张表涉及多个索引,mysql最终如何选择索引,我们可以用trace工具来一查究竟,开启trace工具会影响mysql性能,所以只能临时分析sql使用,用完之后立即关闭。
select * from employees where name >'a' order by position;sELECT * FROM information_schema.OPTIMIZER_TRACE; 复制代码
执行这两句sql
{ "steps": [ { "join_preparation": { --第一阶段:SQL准备阶段 "select#": 1, "steps": [ { "expanded_query": "/* select#1 */ select `employees`.`id` AS `id`,`employees`.`name` AS `name`,`employees`.`age` AS `age`,`employees`.`position` AS `position`,`employees`.`hire_time` AS `hire_time` from `employees` where (`employees`.`name` > 'a') order by `employees`.`position`" } ] /* steps */ } /* join_preparation */ }, { "join_optimization": { --第二阶段:SQL优化阶段 "select#": 1, "steps": [ { "condition_processing": { --条件处理 "condition": "WHERE", "original_condition": "(`employees`.`name` > 'a')", "steps": [ { "transformation": "equality_propagation", "resulting_condition": "(`employees`.`name` > 'a')" }, { "transformation": "constant_propagation", "resulting_condition": "(`employees`.`name` > 'a')" }, { "transformation": "trivial_condition_removal", "resulting_condition": "(`employees`.`name` > 'a')" } ] /* steps */ } /* condition_processing */ }, { "substitute_generated_columns": { } /* substitute_generated_columns */ }, { "table_dependencies": [ --表依赖详情 { "table": "`employees`", "row_may_be_null": false, "map_bit": 0, "depends_on_map_bits": [ ] /* depends_on_map_bits */ } ] /* table_dependencies */ }, { "ref_optimizer_key_uses": [ ] /* ref_optimizer_key_uses */ }, { "rows_estimation": [ --预估表的访问成本 { "table": "`employees`", "range_analysis": { "table_scan": { --全表扫描 "rows": 3, --扫描行数 "cost": 3.7 --查询成本 } /* table_scan */, "potential_range_indexes": [ --查询可能使用的索引 { "index": "PRIMARY", --主键索引 "usable": false, "cause": "not_applicable" }, { "index": "idx_name_age_position", --辅助索引 "usable": true, "key_parts": [ "name", "age", "position", "id" ] /* key_parts */ }, { "index": "idx_age", "usable": false, "cause": "not_applicable" } ] /* potential_range_indexes */, "setup_range_conditions": [ ] /* setup_range_conditions */, "group_index_range": { "chosen": false, "cause": "not_group_by_or_distinct" } /* group_index_range */, "analyzing_range_alternatives": { --分析各个索引使用成本 "range_scan_alternatives": [ { "index": "idx_name_age_position", "ranges": [ "a < name" --索引使用范围 ] /* ranges */, "index_pes_for_eq_ranges": true, "rowid_ordered": false, --使用该索引获取的记录是否按照主键排序 "using_mrr": false, "index_only": false, --是否使用覆盖索引 "rows": 3, --索引扫描行数 "cost": 4.61, --索引使用成本 "chosen": false, --是否选择该索引 "cause": "cost" } ] /* range_scan_alternatives */, "analyzing_roworder_intersect": { "usable": false, "cause": "too_few_roworder_scans" } /* analyzing_roworder_intersect */ } /* analyzing_range_alternatives */ } /* range_analysis */ } ] /* rows_estimation */ }, { "considered_execution_plans": [ { "plan_prefix": [ ] /* plan_prefix */, "table": "`employees`", "best_access_path": { --最优访问路径 "considered_access_paths": [ --最终选择的访问路径 { "rows_to_scan": 3, "access_type": "scan", --访问类型:为sacn,全表扫描 "resulting_rows": 3, "cost": 1.6, "chosen": true, --确定选择 "use_tmp_table": true } ] /* considered_access_paths */ } /* best_access_path */, "condition_filtering_pct": 100, "rows_for_plan": 3, "cost_for_plan": 1.6, "sort_cost": 3, "new_cost_for_plan": 4.6, "chosen": true } ] /* considered_execution_plans */ }, { "attaching_conditions_to_tables": { "original_condition": "(`employees`.`name` > 'a')", "attached_conditions_computation": [ ] /* attached_conditions_computation */, "attached_conditions_summary": [ { "table": "`employees`", "attached": "(`employees`.`name` > 'a')" } ] /* attached_conditions_summary */ } /* attaching_conditions_to_tables */ }, { "clause_processing": { "clause": "ORDER BY", "original_clause": "`employees`.`position`", "items": [ { "item": "`employees`.`position`" } ] /* items */, "resulting_clause_is_simple": true, "resulting_clause": "`employees`.`position`" } /* clause_processing */ }, { "reconsidering_access_paths_for_index_ordering": { "clause": "ORDER BY", "index_order_summary": { "table": "`employees`", "index_provides_order": false, "order_direction": "undefined", "index": "unknown", "plan_changed": false } /* index_order_summary */ } /* reconsidering_access_paths_for_index_ordering */ }, { "refine_plan": [ { "table": "`employees`" } ] /* refine_plan */ } ] /* steps */ } /* join_optimization */ }, { "join_execution": { --第三阶段:SQL执行阶段 "select#": 1, "steps": [ { "filesort_information": [ { "direction": "asc", "table": "`employees`", "field": "position" } ] /* filesort_information */, "filesort_priority_queue_optimization": { "usable": false, "cause": "not applicable (no LIMIT)" } /* filesort_priority_queue_optimization */, "filesort_execution": [ ] /* filesort_execution */, "filesort_summary": { "rows": 3, "examined_rows": 3, "number_of_tmp_files": 0, "sort_buffer_size": 200704, "sort_mode": "<sort_key, packed_additional_fields>" } /* filesort_summary */ } ] /* steps */ } /* join_execution */ } ] /* steps */ }复制代码
提出来trace值,详见注释
select * from employees where name > 'zzz' order by position;SELECT * FROM information_schema.OPTIMIZER_TRACE; 复制代码
结论:全表扫描的成本低于索引扫描,所以MySQL最终选择全表扫描。
EXPLAIN select * from employees where name = 'ZhangSan' and position = 'dev' order by age复制代码
结论:查看trace字段可知索引扫描的成本低于全表扫描,所以MySQL最终选择索引扫描。
Order by
与 Group by
优化EXPLAIN select * from employees where name = 'ZhangSan' order by position复制代码
分析:
利用最左前缀法则:中间字段不能断,因此查询用到了 name索引
,从 key_len = 74 也能看出,age 索引列用在排序过程过程中,因为 Extra 字段里没有 using filesort
。
EXPLAIN select * from employees where name = 'ZhangSan' order by age,position复制代码
分析:
从 explain 的执行结果来看:key_len = 74,查询使用了 name 索引,由于用了 position 进行排序,跳过了 age,出现了 Using filesort
。
EXPLAIN select * from employees where name = 'ZhangSan' order by position,age复制代码
分析:
查询只用到索引name
,age 和 position 用于排序,无Using filesort
。
EXPLAIN select * from employees where name = 'ZhangSan' and age = 18 order by position,age复制代码
分析:
和案例3中explain的执行结果一样,但是出现了Using filesort
,因为索引的创建顺序为 name,age,position
결론: 전체 테이블 스캔 비용이 인덱스 스캔보다 저렴하므로 MySQL은 마침내 전체 테이블 스캔을 선택합니다.
EXPLAIN select * from employees where name = 'ZhangSan' order by age asc, position desc;复制代码🎜결론🎜: Trace 필드를 보면 전체 테이블 스캔보다 인덱스 스캔 비용이 낮다는 것을 알 수 있으므로 MySQL은 마침내 인덱스 스캔을 선택합니다. 🎜
순서 기준
및 그룹화 기준
최적화 🎜EXPLAIN select * from employees where name in ('ZhangSan', 'hjh') order by age, position;复制代码🎜🎜🎜🎜🎜🎜분석: 🎜🎜🎜🎜가장 왼쪽 접두사 규칙 사용🎜 : 중간 필드는 깨질 수 없으므로 쿼리는
name index
를 사용합니다. key_len = 74에서 추가 필드에서 파일 정렬을 사용합니다.> 🎜<h3 data-id="heading-10">사례 2</h3><pre class="brush:php;toolbar:false;">EXPLAIN select * from employees where name > &#39;a&#39; order by name;复制代码</pre>🎜<img alt="연습(2)--MySQL 성능 최적화" class="lazyload" src="https://img.php.cn/upload/%20Article/000/000/052/eb3551193382561721acbe6f7a17ece5-3.png" data- style="max-width:90%" data- style="max-width:90%">🎜🎜🎜🎜🎜분석: 🎜🎜🎜explan 실행 결과: key_len = 74 . 쿼리는 이름 index를 사용합니다. 위치는 정렬에 사용되므로 age는 건너뛰고 <code>Using filesort
가 나타납니다. 🎜EXPLAIN select name,age,position from employees where name > 'a' order by name;复制代码🎜🎜🎜🎜🎜🎜분석: 🎜🎜🎜쿼리는
색인 이름, 나이, 위치는 <code>filesort를 사용
하지 않고 정렬에 사용됩니다. 🎜EXPLAIN select * from employees where name = 'ZhangSan' order by position;复制代码🎜🎜🎜🎜🎜🎜분석: 🎜🎜🎜실행 결과는 설명과 같습니다. 3, 그런데
filesort를 사용
한 이유는 인덱스 생성 순서가 이름, 나이, 위치
인데 정렬할 때 나이, 위치가 🎜위치를 반대로🎜하기 때문입니다. 🎜EXPLAIN select * from employees where name = 'ZhangSan' and age = 18 order by position,age复制代码
分析:
与案例4对比,在Extra中并未出现** Using filesort
**,因为 age 为常量,在排序中被优化,所以索引未颠倒,不会出现 Using filesort
。
EXPLAIN select * from employees where name = 'ZhangSan' order by age asc, position desc;复制代码
分析:
虽然排序的字段列与索引顺序一样,且 order by
默认升序,这里 position desc
变成列降序,导致与索引的排序方式不同,从而产生 Using filesort
。MySQL8 以上版本有降序索引可以支持该种查询方式。
EXPLAIN select * from employees where name in ('ZhangSan', 'hjh') order by age, position;复制代码
分析:
对于排序来说,多个相等条件也是范围查询。
EXPLAIN select * from employees where name > 'a' order by name;复制代码
可以用覆盖索引优化
EXPLAIN select name,age,position from employees where name > 'a' order by name;复制代码
filesort
和 index
。Using index 是指MySQL 扫描索引本身完成排序。index 效率高,filesort 效率低。order by null
禁止排序。注意:where 高于 having,能写在 where 中的限定条件就不要去 having 限定了。sort buffer
中进行排序;用 trace 工具可以看到 sort_mode 信息里显示 或者 。MySQL 通过比较系统变量 max_length_for_sort_data
(默认1024字节) 的大小和需要查询的字段总大小来判断使用那种排序模式。
max_length_for_sort_data
比查询的字段的总长度大,那么使用单路排序模式;max_length_for_sort_data
比查询字段的总长度小,那么使用双路排序模式。EXPLAIN select * from employees where name = 'ZhangSan' order by position;复制代码
查看下这条sql对应trace结果如下(只展示排序部分):
set session optimizer_trace="enabled=on",end_markers_in_json=on; #开启traceselect * from employees where name = 'ZhangSan' order by position;select * from information_schema.OPTIMIZER_TRACE;复制代码
"join_execution": { --SQL执行阶段 "select#": 1, "steps": [ { "filesort_information": [ { "direction": "asc", "table": "`employees`", "field": "position" } ] /* filesort_information */, "filesort_priority_queue_optimization": { "usable": false, "cause": "not applicable (no LIMIT)" } /* filesort_priority_queue_optimization */, "filesort_execution": [ ] /* filesort_execution */, "filesort_summary": { --文件排序信息 "rows": 1, --预计扫描行数 "examined_rows": 1, --参数排序的行 "number_of_tmp_files": 0, --使用临时文件的个数,这个只如果为0代表全部使用的sort_buffer内存排序,否则使用的磁盘文件排序 "sort_buffer_size": 200704, --排序缓存的大小 "sort_mode": "<sort_key, packed_additional_fields>" --排序方式,这里用的单路排序 } /* filesort_summary */ } ] /* steps */ } /* join_execution */复制代码
修改系统变量 max_length_for_sort_data
(默认1024字节) ,employees 表所有字段长度总和肯定大于10字节
set max_length_for_sort_data = 10; select * from employees where name = 'ZhangSan' order by position;select * from information_schema.OPTIMIZER_TRACE;复制代码
trace排序部分结果:
"join_execution": { "select#": 1, "steps": [ { "filesort_information": [ { "direction": "asc", "table": "`employees`", "field": "position" } ] /* filesort_information */, "filesort_priority_queue_optimization": { "usable": false, "cause": "not applicable (no LIMIT)" } /* filesort_priority_queue_optimization */, "filesort_execution": [ ] /* filesort_execution */, "filesort_summary": { "rows": 1, "examined_rows": 1, "number_of_tmp_files": 0, "sort_buffer_size": 53248, "sort_mode": "<sort_key, rowid>" --排序方式,这里用饿的双路排序 } /* filesort_summary */ } ] /* steps */ } /* join_execution */ 复制代码
单路排序的详细过程:
双路排序的详细过程:
对比两个排序模式,单路排序会把所有需要查询的字段都放到 sort_buffer 中,而双路排序只会把主键和需要排序的字段放到 sort_buffer 中进行排序,然后再通过主键回到原表查询需要的字段。
如果MySQL排序内存配置的比较小并且没有条件继续增加了,可以适当把 max_length_for_sort_data
配置小点,让优化器选择使用双路排序算法,可以在 sort_buffer 中一次排序更多的行,只是需要再根据主键回到原表取数据。
如果MySQL排序内存有条件可以配置比较大,可以适当增大 max_length_for_sort_data
的值,让优化器优先选择全字段排序(单路排序),把需要的字段放到 sort_buffer 中,这样排序后就会直接从内存里返回查询结果了。
所以,MySQL 通过 max_length_for_sort_data
这个参数来控制排序,在不同场景使用不同的排序模式,从而提升排序效率。
注意:如果全部使用sort_buffer 内存排序一般情况下效率会高于磁盘文件排序,但不能因为这个就随便增大 sort_buffer(默认1M),MySQL很多参数设置都做过优化的,不要轻易调整。
在这我们先往 employess
插入一些测试数据
drop procedure if exists insert_emp; delimiter ;; create procedure insert_emp()begin declare i int; set i=1; while(i<=100000) do insert into employees(name,age,position) values(CONCAT('hjh',i),i,'dev'); set i=i+1; end while;end;; delimiter ; call insert_emp();复制代码
很多时候我们业务系统实现分页功能可能会用如下SQL实现
select * from employees limit 10000,10;复制代码
表示从表 employees 中取出从 10001 行开始的 10 行记录。看似只查询了 10 条记录,实际这条 SQL 是先读取 10010 条记录,然后抛弃前 10000 条记录,然后读到后面 10 条想要的数据。因此要查询一张大表比较靠后的数据,执行效率是非常低的。
首先来看一个根据自增且连续主键排序的分页查询的例子:
select * from employees limit 9000,5;复制代码
该 SQL 表示查询从第 9001开始的五行数据,没添加单独 order by,表示通过主键排序。我们再看表 employees ,因为主键是自增并且连续的,所以可以改写成按照主键去查询从第 9001开始的五行数据,如下:
select * from employees where id > 9000 limit 5;复制代码
查询结果是一致的,我们再对比一下执行计划:
EXPLAIN select * from employees limit 9000,5;复制代码
EXPLAIN select * from employees where id > 9000 limit 5;复制代码
显然改写后的 SQL 走了索引,而且扫描的行数大大减少,执行效率更高。 但是,这条改写的 SQL 在很多场景并不实用,因为表中可能某些记录被删后,主键空缺,导致结果不一致,如下图试验所示(先删除一条前面的记录,然后再测试原 SQL 和优化后的 SQL):
两条 SQL 的结果并不一样,因此,如果主键不连续,不能使用上面描述的优化方法。
另外如果原SQL是order by 非主键的字段,按照上面说饿的方法改写会导致两条SQL的结果不一致。所以这种改写得满足以下两个条件:
再看一个根据非主键字段排序的分页查询,SQL 如下:
select * from employees ORDER BY name limit 9000,5;复制代码
EXPLAIN select * from employees ORDER BY name limit 90000,5;复制代码
发现并没有使用 name 字段的索引(key 字段对应的值为 null),具体原因上前面讲过 : 扫描整个索引并查找到没索引的行(可能要遍历多个索引树)的成本比扫描全表的成本更高,所以优化器放弃使用索引。 知道不走索引的原因,那么怎么优化呢? 其实关键是让排序时返回的字段尽可能少,所以可以让排序和分页操作先查出主键,然后根据主键查到对应的记录,SQL 改写如下:
select * from employees e inner join (select id from employees order by name limit 90000,5) ed on e.id = ed.id;复制代码
需要的结果与原 SQL 一致,执行时间减少了一半以上,我们再对比优化前后sql的执行计划:
EXPLAIN select * from employees e inner join (select id from employees order by name limit 90000,5) ed on e.id = ed.id;复制代码
原 SQL 使用的是 filesort 排序,而优化后的 SQL 使用的是索引排序。
#示例表CREATE TABLE `t1` ( `id` INT (11) NOT NULL AUTO_INCREMENT, `a` INT (11) DEFAULT NULL, `b` INT (11) DEFAULT NULL, PRIMARY KEY (`id`), KEY `idx_a` (`a`) ) ENGINE = INNODB AUTO_INCREMENT = 10001 DEFAULT CHARSET = utf8;CREATE TABLE t2 LIKE t1;复制代码
往t1表插入1万行记录,往t2表插入100行记录
#t1 1万条记录drop procedure if exists insert_emp_t1; delimiter ;; create procedure insert_emp_t1()begin declare i int; set i=1; while(i<=10000) do insert into t1(a,b) values(i,i); set i=i+1; end while;end;; delimiter ; call insert_emp_t1(); #t2 100条记录drop procedure if exists insert_emp_t2; delimiter ;; create procedure insert_emp_t2()begin declare i int; set i=1; while(i<=100) do insert into t2(a,b) values(i,i); set i=i+1; end while;end;; delimiter ; call insert_emp_t2();复制代码
一次一行循环地从第一张表(称为驱动表)中读取行,在这行数据中取到关联字段,根据关联字段在另一张表(被驱动表)里取出满足条件的行,然后取出两张表的结果合集。
EXPLAIN select * from t1 inner join t2 on t1.a= t2.a;复制代码
从执行计划中可以看到这些信息:
上面SQL的大致流程如下:
整个过程会读取 t2 表的所有数据(扫描100行),然后遍历这每行数据中字段 a 的值,根据 t2 表中的 a 的值索引扫描 t1 表中对应的行(扫描 100次 t1 表的索引,1次扫描可以认为最终只扫描 t1 表一行完整数据,也就是总共 t1 表也扫描了100行)。因此整个过程扫描了 200 行。
如果被驱动表的关联字段没有索引,使用NLJ算法性能会比较低(下面有详细解释),MySQL 会选择 Block Nested-Loop Join 算法。
把驱动表的数据读入到 join_buffer 中,然后扫描被驱动表,把被驱动表每一行取出来跟 join_buffer 中的数据做对比。
EXPLAIN select * from t1 inner join t2 on t1.b= t2.b;复制代码
Extra 中 的Using join buffer (Block Nested Loop)说明该关联查询使用的是 BNL 算法。
上面sql的大致流程如下:
整个过程对表 t1 和 t2 都做了一次全表扫描,因此扫描的总行数为10000(表 t1 的数据总量) + 100(表 t2 的数据总量) = 10100。并且 join_buffer 里的数据是无序的,因此对表 t1 中的每一行,都要做 100 次判断,所以内存中的判断次数是 100 * 10000= 100 万次。
被驱动表的关联字段没索引为什么要选择使用 BNL 算法而不使用 Nested-Loop Join 呢?
如果上面第二条sql使用 Nested-Loop Join,那么扫描行数为 100 * 10000 = 100万次,这个是磁盘扫描。
很显然,用BNL磁盘扫描次数少很多,相比于磁盘扫描,BNJ 的内存计算会快得多。
因此MySQL对于被驱动表的关联字段没索引的关联查询,一般都会使用 BNL 算法。如果有索引一般选择 NLJ 算法,有索引的情况下 NLJ 算法比 BNL算法性能更高。
straight_join
写法固定连接驱动方式,省去mysql优化器自己判断的时间straight_join解释
straight_join功能同join类似,但能让左边的表来驱动右边的表,能改变优化器对于联表查询的执行顺序。
比如 : select * from t2 straight_join t1 on t2.a = t1.a;
代表制定mysql选择 t2 表作为驱动表。
原则:小表驱动大表,即小的数据集驱动大的数据集。
in:当B表的数据集小于A表的数据集时,in优于exists
select * from A where id in(select id from B) #等价于:for(select id from B){ select * from A where A.id = B.id }复制代码
exists:当A表的数据集小于B表的数据集时,exists优于in
将主查询A的数据,放到子查询B中做条件验证,根据验证结果(true或false)来决定主查询的数据是否保留
select * from A where exists (select 1 from B whereB.id=A.id) #等价于:for(select * from A){ select * from B where B.id = A.id } #A表与B表的ID字段应建立索引复制代码
Count(*)
查询优化临时关闭mysql查询缓存,为了查看sql多次执行的真实时间。
set global query_cache_size=0;set global query_cache_type=0;复制代码
EXPLAIN select count(1) from employees; EXPLAIN select count(id) from employees;EXPLAIN select count(name) from employees; EXPLAIN select count(*) from employees;复制代码
四个sql的执行计划一样,说明这四个sql执行效率应该差不多,区别在于根据某个字段count不会统计字段为null值的数据行。
为什么mysql最终选择辅助索引而不是主键聚集索引?
因为二级索引相对主键索引存储数据更少,检索性能应该更高
Formyisam myisam 스토리지 엔진 테이블의 전체 행 수는 mysql에 의해 디스크에 저장되지만 쿼리는 수행되지 않기 때문에 스토리지 엔진 테이블에서 where 조건 없이 카운트 쿼리 성능이 매우 높습니다. 계산할 필요가 있습니다.
innodb 스토리지 엔진의 테이블 mysql에서는 테이블의 총 레코드 행 수를 저장하지 않으며 쿼리 횟수를 실시간으로 계산해야 합니다.
테이블 상태 표시테이블의 총 행 수에 대한 추정 값만 알고 싶은 경우 다음 SQL 쿼리를 사용하면 성능이 매우 높습니다 총 행 수는 다음과 같습니다. Redis에서 유지테이블 데이터 행을 삽입하거나 삭제할 때 동시에 Redis에서 테이블 행 키의 총 개수에 대한 개수 값을 유지하지만(incr 또는 decr 명령 사용) 이 방법은 부정확할 수 있으며 어려울 수 있습니다. 테이블 작업과 Redis 작업 간의 트랜잭션 일관성을 보장합니다. 카운트 테이블 추가테이블 데이터 행을 삽입하거나 삭제할 때 동일한 트랜잭션에서 작동할 수 있도록 카운트 테이블을 동시에 유지해야 합니다.프로그래밍 학습에 대해 더 자세히 알고 싶다면php training 칼럼을 주목해주세요!
위 내용은 연습(2)--MySQL 성능 최적화의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!