A/B 테스트 평가를 수행할 때 p_value를 사용해야 합니다. 이 기사에서는 Python을 사용하여 두 데이터 세트의 유의성을 계산하는 방법을 기록합니다.
1. 코드
# TTest.py # -*- coding: utf-8 -*- ''' # Created on 2020-05-20 20:36 # TTest.py # @author: huiwenhua ''' ## Import the packages import numpy as np from scipy import stats def get_p_value(arrA, arrB): a = np.array(arrA) b = np.array(arrB) t, p = stats.ttest_ind(a,b) return p if __name__ == "__main__": get_p_value([1, 2, 3, 5, ], [6, 7, 8, 9, 10])
2. T-검정: 2-표본 T-검정
2-표본 t-검정은 두 모집단이 다음과 같이 표현되는지 비교하는 것입니다. 두 샘플의 차이가 큽니다. 표본이 정규 분포에서 나오도록 요구하는 것 외에도 두 표본의 모집단 분산이 동일해야 하며, 이는 "분산의 동질성"입니다.
귀무 가설 테스트: 표본 평균에 차이가 없습니다(μ=μ0)
Python 명령 stats.ttest_ind(data1,data2)
두 모집단의 분산이 같은지 확실하지 않은 경우 다음을 수행해야 합니다. 먼저 Levene 테스트를 사용하여 두 모집단에 분산이 있는지 테스트합니다. 동질성 stats.levene(data1,data2) 반환된 결과의 p-값이 0.05보다 훨씬 크면 두 모집단에 분산의 동질성이 있다고 믿습니다. 두 모집단에 동종 분산이 없으면 다음과 같이 매개변수 equal_val을 추가하고 이를 False로 설정해야 합니다.
stats.ttest_ind(data1,data2,equal_var=False) // TTest의 기본값은 분산의 동질성입니다
3. 결과 해석
p 값이 특정 유의 수준 α보다 작은 경우( 0.05 등), 표본 평균에 유의미한 차이가 있는 것으로 간주되며, 구체적인 분석은 선택한 가설이 양측 가설인지(보다 작음과 큼으로 구분됨) 단측 가설인지에 따라 달라집니다. 양면 테스트를 수행하려면 stats.ttest_ind로 이동하세요.
t 값이 0보다 크면 첫 번째 데이터 세트가 두 번째 데이터 세트보다 낫다는 ((1-p)*100)% 신뢰도가 있습니다. 예를 들어, p=0.05이면 첫 번째 데이터 세트가 두 번째 데이터 세트보다 낫다고 95% 확신합니다.
관련 학습 권장사항: python 비디오 튜토리얼
위 내용은 Python을 기반으로 두 데이터 세트의 P 값을 계산하는 방법의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

Python은 데이터 과학, 웹 개발 및 자동화 작업에 적합한 반면 C는 시스템 프로그래밍, 게임 개발 및 임베디드 시스템에 적합합니다. Python은 단순성과 강력한 생태계로 유명하며 C는 고성능 및 기본 제어 기능으로 유명합니다.

2 시간 이내에 Python의 기본 프로그래밍 개념과 기술을 배울 수 있습니다. 1. 변수 및 데이터 유형을 배우기, 2. 마스터 제어 흐름 (조건부 명세서 및 루프), 3. 기능의 정의 및 사용을 이해하십시오. 4. 간단한 예제 및 코드 스 니펫을 통해 Python 프로그래밍을 신속하게 시작하십시오.

Python은 웹 개발, 데이터 과학, 기계 학습, 자동화 및 스크립팅 분야에서 널리 사용됩니다. 1) 웹 개발에서 Django 및 Flask 프레임 워크는 개발 프로세스를 단순화합니다. 2) 데이터 과학 및 기계 학습 분야에서 Numpy, Pandas, Scikit-Learn 및 Tensorflow 라이브러리는 강력한 지원을 제공합니다. 3) 자동화 및 스크립팅 측면에서 Python은 자동화 된 테스트 및 시스템 관리와 같은 작업에 적합합니다.

2 시간 이내에 파이썬의 기본 사항을 배울 수 있습니다. 1. 변수 및 데이터 유형을 배우십시오. 이를 통해 간단한 파이썬 프로그램 작성을 시작하는 데 도움이됩니다.

10 시간 이내에 컴퓨터 초보자 프로그래밍 기본 사항을 가르치는 방법은 무엇입니까? 컴퓨터 초보자에게 프로그래밍 지식을 가르치는 데 10 시간 밖에 걸리지 않는다면 무엇을 가르치기로 선택 하시겠습니까?

Fiddlerevery Where를 사용할 때 Man-in-the-Middle Reading에 Fiddlereverywhere를 사용할 때 감지되는 방법 ...

Python 3.6에 피클 파일로드 3.6 환경 보고서 오류 : modulenotfounderror : nomodulename ...

경치 좋은 스팟 댓글 분석에서 Jieba Word 세분화 문제를 해결하는 방법은 무엇입니까? 경치가 좋은 스팟 댓글 및 분석을 수행 할 때 종종 Jieba Word 세분화 도구를 사용하여 텍스트를 처리합니다 ...


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

MinGW - Windows용 미니멀리스트 GNU
이 프로젝트는 osdn.net/projects/mingw로 마이그레이션되는 중입니다. 계속해서 그곳에서 우리를 팔로우할 수 있습니다. MinGW: GCC(GNU Compiler Collection)의 기본 Windows 포트로, 기본 Windows 애플리케이션을 구축하기 위한 무료 배포 가능 가져오기 라이브러리 및 헤더 파일로 C99 기능을 지원하는 MSVC 런타임에 대한 확장이 포함되어 있습니다. 모든 MinGW 소프트웨어는 64비트 Windows 플랫폼에서 실행될 수 있습니다.

PhpStorm 맥 버전
최신(2018.2.1) 전문 PHP 통합 개발 도구

SublimeText3 Linux 새 버전
SublimeText3 Linux 최신 버전

SecList
SecLists는 최고의 보안 테스터의 동반자입니다. 보안 평가 시 자주 사용되는 다양한 유형의 목록을 한 곳에 모아 놓은 것입니다. SecLists는 보안 테스터에게 필요할 수 있는 모든 목록을 편리하게 제공하여 보안 테스트를 더욱 효율적이고 생산적으로 만드는 데 도움이 됩니다. 목록 유형에는 사용자 이름, 비밀번호, URL, 퍼징 페이로드, 민감한 데이터 패턴, 웹 셸 등이 포함됩니다. 테스터는 이 저장소를 새로운 테스트 시스템으로 간단히 가져올 수 있으며 필요한 모든 유형의 목록에 액세스할 수 있습니다.

Atom Editor Mac 버전 다운로드
가장 인기 있는 오픈 소스 편집기
