>  기사  >  백엔드 개발  >  데이터 구조 정렬 알고리즘 요약

데이터 구조 정렬 알고리즘 요약

angryTom
angryTom원래의
2019-11-01 09:39:154741검색

데이터 구조 정렬 알고리즘 요약

데이터 구조 정렬 알고리즘 요약

개요

정렬에는 내부 정렬과 외부 정렬이 있는데, 외부 정렬은 정렬된 데이터의 양이 매우 크기 때문입니다. 한번에 처리할 수 없습니다. 정렬된 모든 기록을 수용하려면 정렬 과정에서 외부 저장소에 접근해야 합니다.

1. 삽입 정렬 - 직선 삽입 정렬

기본 아이디어:

정렬된 순서 목록에 레코드를 삽입하면 레코드 수가 1개 증가한 새로운 순서 목록을 얻습니다. 즉, 먼저 시퀀스의 첫 번째 레코드를 정렬된 하위 시퀀스로 처리한 다음 전체 시퀀스가 ​​정렬될 때까지 두 번째 레코드를 하나씩 삽입합니다.

핵심 사항: 임시 저장을 위한 센티넬을 설정하고 배열 경계를 판단합니다.

삽입된 요소와 동일한 요소가 발견되면 삽입된 요소는 동일한 요소 뒤에 삽입하려는 요소를 배치합니다. 따라서 동일한 요소의 순서는 변경되지 않았습니다. 원래 정렬되지 않은 시퀀스의 순서는 정렬 후의 순서이므로 삽입 정렬이 안정적입니다.

알고리즘 구현:

void print(int a[], int n ,int i){  
    cout<<i <<":";  
    for(int j= 0; j<8; j++){  
        cout<<a[j] <<" ";  
    }  
    cout<<endl;  
}  
  
  
void InsertSort(int a[], int n)  
{  
    for(int i= 1; i<n; i++){  
        if(a[i] < a[i-1]){               //若第i个元素大于i-1元素,直接插入。小于的话,移动有序表后插入  
            int j= i-1;   
            int x = a[i];        //复制为哨兵,即存储待排序元素  
            a[i] = a[i-1];           //先后移一个元素  
            while(x < a[j]){  //查找在有序表的插入位置  
                a[j+1] = a[j];  
                j--;         //元素后移  
            }  
            a[j+1] = x;      //插入到正确位置  
        }  
        print(a,n,i);           //打印每趟排序的结果  
    }  
      
}  
  
int main(){  
    int a[8] = {3,1,5,7,2,4,9,6};  
    InsertSort(a,8);  
    print(a,8,8);  
}

시간 복잡도: O(n^2).

다른 삽입 정렬에는 이진 삽입 정렬과 양방향 삽입 정렬이 포함됩니다.

2. 삽입 정렬 - Hill 정렬(Shell`s Sort)

Hill 정렬은 1959년 D.L. Shell이 ​​제안했습니다. 직접 정렬에 비해 크게 개선되었습니다. Hill 정렬은 축소 증분 정렬이라고도 합니다.

기본 아이디어:

먼저 정렬할 레코드의 전체 시퀀스를 여러 하위 시퀀스로 나누어 전체 시퀀스의 레코드가 "기본적으로 순서대로" 정렬되면 모두 정렬합니다. 레코드는 삽입을 기준으로 직접 정렬됩니다.

작업 방법:

증분 시퀀스 t1, t2,...,tk를 선택합니다. 여기서 ti>tj, tk=1입니다. 증분 시퀀스 수 k에 따라 시퀀스를 k번 정렬합니다. 해당 증분 ti는 정렬할 열을 길이가 m인 여러 하위 시퀀스로 나누고 각 하위 목록에 대해 직접 삽입 정렬을 수행합니다. 증분 인수가 1인 경우에만 전체 시퀀스를 테이블로 처리하며, 테이블의 길이는 전체 시퀀스의 길이가 된다.

알고리즘 구현:

우리는 단순히 증분 시퀀스를 처리합니다. 증분 시퀀스 d = {n/2,n/4, n/8...1} n은 정렬할 숫자의 수입니다

즉 : 먼저 정렬할 레코드 그룹을 특정 증분 d(n/2, n은 정렬할 숫자 수)에 따라 여러 하위 시퀀스 그룹으로 나누고, 각 그룹에 있는 레코드의 첨자는 d만큼 다릅니다. 각 그룹의 모든 레코드에 대해 요소는 직접 삽입으로 정렬된 다음 더 작은 증분(d/2)으로 그룹화되고 각 그룹 내에서 다시 정렬됩니다. 1이 될 때까지 계속해서 증가분을 줄이고 마지막으로 직접 삽입 정렬을 사용하여 정렬을 완료합니다.

void print(int a[], int n ,int i){ 
    cout<<i <<":"; 
    for(int j= 0; j<8; j++){ 
        cout<<a[j] <<" "; 
    } 
    cout<<endl; 
} 
/**
 * 直接插入排序的一般形式
 *
 * @param int dk 缩小增量,如果是直接插入排序,dk=1
 *
 */ 
   
void ShellInsertSort(int a[], int n, int dk) 
{ 
    for(int i= dk; i<n; ++i){ 
        if(a[i] < a[i-dk]){          //若第i个元素大于i-1元素,直接插入。小于的话,移动有序表后插入 
            int j = i-dk;    
            int x = a[i];           //复制为哨兵,即存储待排序元素 
            a[i] = a[i-dk];         //首先后移一个元素 
            while(x < a[j]){     //查找在有序表的插入位置 
                a[j+dk] = a[j]; 
                j -= dk;             //元素后移 
            } 
            a[j+dk] = x;            //插入到正确位置 
        } 
        print(a, n,i ); 
    } 
       
} 
   
/**
 * 先按增量d(n/2,n为要排序数的个数进行希尔排序
 *
 */ 
void shellSort(int a[], int n){ 
   
    int dk = n/2; 
    while( dk >= 1  ){ 
        ShellInsertSort(a, n, dk); 
        dk = dk/2; 
    } 
} 
int main(){ 
    int a[8] = {3,1,5,7,2,4,9,6}; 
    //ShellInsertSort(a,8,1); //直接插入排序 
    shellSort(a,8);           //希尔插入排序 
    print(a,8,8); 
}

힐 정렬 적시성 분석은 증분 계수 시퀀스 선택에 따라 키 코드 비교 횟수와 기록된 동작 수에 따라 달라집니다. d 특정 상황에서는 키 코드 비교 횟수와 기록된 동작 수가 달라질 수 있습니다. 정확하게 추정해야 합니다. 아직까지 최고의 증분 요소 순서를 선택하는 방법을 제시한 사람은 없습니다. 증분인수열은 홀수, 소수 등 다양한 방식으로 취할 수 있으나, 증분인수 중 1 외에는 공통인자가 없으며, 마지막 증분인수는 1이어야 한다는 점에 유의해야 한다. 힐 정렬 방법은 불안정한 정렬 방법입니다.

3. 선택 정렬 - 단순 선택 정렬

기본 아이디어:

정렬할 숫자 집합에서 가장 작은(또는 가장 큰) 숫자와 첫 번째 위치의 숫자를 선택한 다음 가장 작은 숫자( 또는 가장 큰) 숫자를 두 번째 위치의 숫자와 교환하는 식으로, n-1번째 요소(두 번째 숫자)와 n번째 요소(마지막 숫자)가 비교될 때까지 계속됩니다.

작업 방법:

첫 번째 패스는 n개의 레코드 중에서 키 코드가 가장 작은 레코드를 찾아서 첫 번째 레코드와 교환합니다.

두 번째 패스는 두 번째 레코드부터 n-1개의 레코드부터 시작합니다. 키 코드가 가장 작은 레코드를 선택하여 두 번째 레코드와 교환합니다.

등...

i번째 패스에서는 i번째부터 시작하여 n-i+1 레코드 중에서 키를 선택합니다. 레코드 전체 시퀀스가 ​​키 코드별로 정렬될 때까지 가장 작은 코드를 가진 레코드가 i번째 레코드와 교환됩니다.


알고리즘 구현:

void print(int a[], int n ,int i){  
    cout<<"第"<<i+1 <<"趟 : ";  
    for(int j= 0; j<8; j++){  
        cout<<a[j] <<"  ";  
    }  
    cout<<endl;  
}  
/** 
 * 数组的最小值 
 * 
 * @return int 数组的键值 
 */  
int SelectMinKey(int a[], int n, int i)  
{  
    int k = i;  
    for(int j=i+1 ;j< n; ++j) {  
        if(a[k] > a[j]) k = j;  
    }  
    return k;  
}  
  
/** 
 * 选择排序 
 * 
 */  
void selectSort(int a[], int n){  
    int key, tmp;  
    for(int i = 0; i< n; ++i) {  
        key = SelectMinKey(a, n,i);           //选择最小的元素  
        if(key != i){  
            tmp = a[i];  a[i] = a[key]; a[key] = tmp; //最小元素与第i位置元素互换  
        }  
        print(a,  n , i);  
    }  
}  
int main(){  
    int a[8] = {3,1,5,7,2,4,9,6};  
    cout<<"初始值:";  
    for(int j= 0; j<8; j++){  
        cout<<a[j] <<"  ";  
    }  
    cout<<endl<<endl;  
    selectSort(a, 8);  
    print(a,8,8);  
}

간단한 선택 정렬 개선 - 이진 선택 정렬

간단한 선택 정렬, 각 주기는 정렬 후 한 요소의 위치만 결정할 수 있습니다. 각 사이클에 대해 두 요소(현재 최대 및 최소 레코드)의 위치 지정을 개선하여 정렬에 필요한 사이클 수를 줄이는 것을 고려할 수 있습니다. 개선 후에는 n개의 데이터를 정렬하려면 최대 [n/2]개의 루프만 필요합니다. 구체적인 구현은 다음과 같습니다:

void SelectSort(int r[],int n) {  
    int i ,j , min ,max, tmp;  
    for (i=1 ;i <= n/2;i++) {    
        // 做不超过n/2趟选择排序   
        min = i; max = i ; //分别记录最大和最小关键字记录位置  
        for (j= i+1; j<= n-i; j++) {  
            if (r[j] > r[max]) {   
                max = j ; continue ;   
            }    
            if (r[j]< r[min]) {   
                min = j ;   
            }     
      }    
      //该交换操作还可分情况讨论以提高效率  
      tmp = r[i-1]; r[i-1] = r[min]; r[min] = tmp;  
      tmp = r[n-i]; r[n-i] = r[max]; r[max] = tmp;   
  
    }   
}

4. 선택 정렬 - 힙 정렬

힙 정렬은 직접 선택 정렬을 효과적으로 개선한 트리 선택 정렬입니다.

기본 아이디어:

Heap은 다음과 같이 정의됩니다: n 요소의 시퀀스(k1, k2,...,kn),

时称之为堆。由堆的定义可以看出,堆顶元素(即第一个元素)必为最小项(小顶堆)。
若以一维数组存储一个堆,则堆对应一棵完全二叉树,且所有非叶结点的值均不大于(或不小于)其子女的值,根结点(堆顶元素)的值是最小(或最大)的。如:

(a)大顶堆序列:(96, 83,27,38,11,09)

  (b)  小顶堆序列:(12,36,24,85,47,30,53,91)

初始时把要排序的n个数的序列看作是一棵顺序存储的二叉树(一维数组存储二叉树),调整它们的存储序,使之成为一个堆,将堆顶元素输出,得到n 个元素中最小(或最大)的元素,这时堆的根节点的数最小(或者最大)。然后对前面(n-1)个元素重新调整使之成为堆,输出堆顶元素,得到n 个元素中次小(或次大)的元素。依此类推,直到只有两个节点的堆,并对它们作交换,最后得到有n个节点的有序序列。称这个过程为堆排序。

因此,实现堆排序需解决两个问题:

  1. 如何将n 个待排序的数建成堆;

  2. 2. 输出堆顶元素后,怎样调整剩余n-1 个元素,使其成为一个新堆。

首先讨论第二个问题:输出堆顶元素后,对剩余n-1元素重新建成堆的调整过程。
调整小顶堆的方法:

1)设有m 个元素的堆,输出堆顶元素后,剩下m-1 个元素。将堆底元素送入堆顶((最后一个元素与堆顶进行交换),堆被破坏,其原因仅是根结点不满足堆的性质。

2)将根结点与左、右子树中较小元素的进行交换。

3)若与左子树交换:如果左子树堆被破坏,即左子树的根结点不满足堆的性质,则重复方法 (2).

4)若与右子树交换,如果右子树堆被破坏,即右子树的根结点不满足堆的性质。则重复方法 (2).

5)继续对不满足堆性质的子树进行上述交换操作,直到叶子结点,堆被建成。

称这个自根结点到叶子结点的调整过程为筛选。

再讨论对n 个元素初始建堆的过程。

建堆方法:对初始序列建堆的过程,就是一个反复进行筛选的过程。

1)n 个结点的完全二叉树,则最后一个结点是第个结点的子树。

2)筛选从第个结点为根的子树开始,该子树成为堆。

3)之后向前依次对各结点为根的子树进行筛选,使之成为堆,直到根结点。

 算法的实现:

从算法描述来看,堆排序需要两个过程,一是建立堆,二是堆顶与堆的最后一个元素交换位置。所以堆排序有两个函数组成。一是建堆的渗透函数,二是反复调用渗透函数实现排序的函数。

void print(int a[], int n){  
    for(int j= 0; j<n; j++){  
        cout<<a[j] <<"  ";  
    }  
    cout<<endl;  
}  
  
  
  
/** 
 * 已知H[s…m]除了H[s] 外均满足堆的定义 
 * 调整H[s],使其成为大顶堆.即将对第s个结点为根的子树筛选,  
 * 
 * @param H是待调整的堆数组 
 * @param s是待调整的数组元素的位置 
 * @param length是数组的长度 
 * 
 */  
void HeapAdjust(int H[],int s, int length)  
{  
    int tmp  = H[s];  
    int child = 2*s+1; //左孩子结点的位置。(i+1 为当前调整结点的右孩子结点的位置)  
    while (child < length) {  
        if(child+1 <length && H[child]<H[child+1]) { // 如果右孩子大于左孩子(找到比当前待调整结点大的孩子结点)  
            ++child ;  
        }  
        if(H[s]<H[child]) {  // 如果较大的子结点大于父结点  
            H[s] = H[child]; // 那么把较大的子结点往上移动,替换它的父结点  
            s = child;       // 重新设置s ,即待调整的下一个结点的位置  
            child = 2*s+1;  
        }  else {            // 如果当前待调整结点大于它的左右孩子,则不需要调整,直接退出  
             break;  
        }  
        H[s] = tmp;         // 当前待调整的结点放到比其大的孩子结点位置上  
    }  
    print(H,length);  
}  
  
  
/** 
 * 初始堆进行调整 
 * 将H[0..length-1]建成堆 
 * 调整完之后第一个元素是序列的最小的元素 
 */  
void BuildingHeap(int H[], int length)  
{   
    //最后一个有孩子的节点的位置 i=  (length -1) / 2  
    for (int i = (length -1) / 2 ; i >= 0; --i)  
        HeapAdjust(H,i,length);  
}  
/** 
 * 堆排序算法 
 */  
void HeapSort(int H[],int length)  
{  
    //初始堆  
    BuildingHeap(H, length);  
    //从最后一个元素开始对序列进行调整  
    for (int i = length - 1; i > 0; --i)  
    {  
        //交换堆顶元素H[0]和堆中最后一个元素  
        int temp = H[i]; H[i] = H[0]; H[0] = temp;  
        //每次交换堆顶元素和堆中最后一个元素之后,都要对堆进行调整  
        HeapAdjust(H,0,i);  
  }  
}   
  
int main(){  
    int H[10] = {3,1,5,7,2,4,9,6,10,8};  
    cout<<"初始值:";  
    print(H,10);  
    HeapSort(H,10);  
    //selectSort(a, 8);  
    cout<<"结果:";  
    print(H,10);  
  
}

分析:

设树深度为k,从根到叶的筛选,元素比较次数至多2(k-1)次,交换记录至多k 次。所以,在建好堆后,排序过程中的筛选次数不超过下式:               

而建堆时的比较次数不超过4n 次,因此堆排序最坏情况下,时间复杂度也为:O(nlogn )。

5. 交换排序—冒泡排序(Bubble Sort)

基本思想:

在要排序的一组数中,对当前还未排好序的范围内的全部数,自上而下对相邻的两个数依次进行比较和调整,让较大的数往下沉,较小的往上冒。即:每当两相邻的数比较后发现它们的排序与排序要求相反时,就将它们互换。

算法的实现:

void bubbleSort(int a[], int n){  
    for(int i =0 ; i< n-1; ++i) {  
        for(int j = 0; j < n-i-1; ++j) {  
            if(a[j] > a[j+1])  
            {  
                int tmp = a[j] ; a[j] = a[j+1] ;  a[j+1] = tmp;  
            }  
        }  
    }  
}

冒泡排序算法的改进

对冒泡排序常见的改进方法是加入一标志性变量exchange,用于标志某一趟排序过程中是否有数据交换,如果进行某一趟排序时并没有进行数据交换,则说明数据已经按要求排列好,可立即结束排序,避免不必要的比较过程。

6. 交换排序—快速排序(Quick Sort)

基本思想:

1)选择一个基准元素,通常选择第一个元素或者最后一个元素,

2)通过一趟排序讲待排序的记录分割成独立的两部分,其中一部分记录的元素值均比基准元素值小。另一部分记录的 元素值比基准值大。

3)此时基准元素在其排好序后的正确位置

4)然后分别对这两部分记录用同样的方法继续进行排序,直到整个序列有序。

算法的实现:

 递归实现:

void print(int a[], int n){  
    for(int j= 0; j<n; j++){  
        cout<<a[j] <<"  ";  
    }  
    cout<<endl;  
}  
  
void swap(int *a, int *b)  
{  
    int tmp = *a;  
    *a = *b;  
    *b = tmp;  
}  
  
int partition(int a[], int low, int high)  
{  
    int privotKey = a[low];                             //基准元素  
    while(low < high){                                   //从表的两端交替地向中间扫描  
        while(low < high  && a[high] >= privotKey) --high;  //从high 所指位置向前搜索,至多到low+1 位置。将比基准元素小的交换到低端  
        swap(&a[low], &a[high]);  
        while(low < high  && a[low] <= privotKey ) ++low;  
        swap(&a[low], &a[high]);  
    }  
    print(a,10);  
    return low;  
}  
  
  
void quickSort(int a[], int low, int high){  
    if(low < high){  
        int privotLoc = partition(a,  low,  high);  //将表一分为二  
        quickSort(a,  low,  privotLoc -1);          //递归对低子表递归排序  
        quickSort(a,   privotLoc + 1, high);        //递归对高子表递归排序  
    }  
}  
  
int main(){  
    int a[10] = {3,1,5,7,2,4,9,6,10,8};  
    cout<<"初始值:";  
    print(a,10);  
    quickSort(a,0,9);  
    cout<<"结果:";  
    print(a,10);  
  
}

分析:

快速排序是通常被认为在同数量级(O(nlog2n))的排序方法中平均性能最好的。但若初始序列按关键码有序或基本有序时,快排序反而蜕化为冒泡排序。为改进之,通常以“三者取中法”来选取基准记录,即将排序区间的两个端点与中点三个记录关键码居中的调整为支点记录。快速排序是一个不稳定的排序方法。

7. 归并排序(Merge Sort)

基本思想:

归并(Merge)排序法是将两个(或两个以上)有序表合并成一个新的有序表,即把待排序序列分为若干个子序列,每个子序列是有序的。然后再把有序子序列合并为整体有序序列。

合并方法:

设r[i…n]由两个有序子表r[i…m]和r[m+1…n]组成,两个子表长度分别为n-i +1、n-m。

j=m+1;k=i;i=i; //置两个子表的起始下标及辅助数组的起始下标若i>m 或j>n,转⑷ //其中一个子表已合并完,比较选取结束//选取r[i]和r[j]较小的存入辅助数组rf
如果r[i]否则,rf[k]=r[j]; j++; k++; 转⑵//将尚未处理完的子表中元素存入rf
如果i<=m,将r[i…m]存入rf[k…n] //前一子表非空
如果j<=n ,  将r[j…n] 存入rf[k…n] //后一子表非空合并结束。

//将r[i…m]和r[m +1 …n]归并到辅助数组rf[i…n]  
void Merge(ElemType *r,ElemType *rf, int i, int m, int n)  
{  
    int j,k;  
    for(j=m+1,k=i; i<=m && j <=n ; ++k){  
        if(r[j] < r[i]) rf[k] = r[j++];  
        else rf[k] = r[i++];  
    }  
    while(i <= m)  rf[k++] = r[i++];  
    while(j <= n)  rf[k++] = r[j++];  
}

归并的迭代算法

1 个元素的表总是有序的。所以对n 个元素的待排序列,每个元素可看成1 个有序子表。对子表两两合并生成n/2个子表,所得子表除最后一个子表长度可能为1 外,其余子表长度均为2。再进行两两合并,直到生成n 个元素按关键码有序的表。

void print(int a[], int n){  
    for(int j= 0; j<n; j++){  
        cout<<a[j] <<"  ";  
    }  
    cout<<endl;  
}  
  
//将r[i…m]和r[m +1 …n]归并到辅助数组rf[i…n]  
void Merge(ElemType *r,ElemType *rf, int i, int m, int n)  
{  
    int j,k;  
    for(j=m+1,k=i; i<=m && j <=n ; ++k){  
        if(r[j] < r[i]) rf[k] = r[j++];  
        else rf[k] = r[i++];  
    }  
    while(i <= m)  rf[k++] = r[i++];  
    while(j <= n)  rf[k++] = r[j++];  
    print(rf,n+1);  
}  
  
void MergeSort(ElemType *r, ElemType *rf, int lenght)  
{   
    int len = 1;  
    ElemType *q = r ;  
    ElemType *tmp ;  
    while(len < lenght) {  
        int s = len;  
        len = 2 * s ;  
        int i = 0;  
        while(i+ len <lenght){  
            Merge(q, rf,  i, i+ s-1, i+ len-1 ); //对等长的两个子表合并  
            i = i+ len;  
        }  
        if(i + s < lenght){  
            Merge(q, rf,  i, i+ s -1, lenght -1); //对不等长的两个子表合并  
        }  
        tmp = q; q = rf; rf = tmp; //交换q,rf,以保证下一趟归并时,仍从q 归并到rf  
    }  
}  
  
  
int main(){  
    int a[10] = {3,1,5,7,2,4,9,6,10,8};  
    int b[10];  
    MergeSort(a, b, 10);  
    print(b,10);  
    cout<<"结果:";  
    print(a,10);  
  
}

两路归并的递归算法

void MSort(ElemType *r, ElemType *rf,int s, int t)  
{   
    ElemType *rf2;  
    if(s==t) r[s] = rf[s];  
    else  
    {   
        int m=(s+t)/2;          /*平分*p 表*/  
        MSort(r, rf2, s, m);        /*递归地将p[s…m]归并为有序的p2[s…m]*/  
        MSort(r, rf2, m+1, t);      /*递归地将p[m+1…t]归并为有序的p2[m+1…t]*/  
        Merge(rf2, rf, s, m+1,t);   /*将p2[s…m]和p2[m+1…t]归并到p1[s…t]*/  
    }  
}  
void MergeSort_recursive(ElemType *r, ElemType *rf, int n)  
{   /*对顺序表*p 作归并排序*/  
    MSort(r, rf,0, n-1);  
}

更多PHP相关知识,请访问PHP中文网

위 내용은 데이터 구조 정렬 알고리즘 요약의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

성명:
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.
이전 기사:외부 C 함수다음 기사:외부 C 함수