Numpy의 간단한 사용법
import numpy as np
一, ndarray 객체 생성
목록을 ndarray로 변환:
>>> a = [1,2,3,4,5] >>> np.array(a) array([1, 2, 3, 4, 5])
임의의 부동 소수점 숫자 가져오기# 🎜🎜#
>>> np.random.rand(3, 4) array([[ 0.16215336, 0.49847764, 0.36217369, 0.6678112 ], [ 0.66729648, 0.86538771, 0.32621889, 0.07709784], [ 0.05460976, 0.3446629 , 0.35589223, 0.3716221 ]])
임의의 정수 가져오기
>>> np.random.randint(1, 5, size=(3,4)) array([[2, 3, 1, 2], [3, 4, 4, 4], [4, 4, 4, 3]])
0 가져오기
>>> np.zeros((3,4)) array([[ 0., 0., 0., 0.], [ 0., 0., 0., 0.], [ 0., 0., 0., 0.]])#🎜 🎜##🎜 🎜#GET一
>>> np.ones((3,4)) array([[ 1., 1., 1., 1.], [ 1., 1., 1., 1.], [ 1., 1., 1., 1.]])비워두세요(사용하지 않는 것이 가장 좋습니다. 이해해 주세요. 버전마다 반환 값이 다릅니다)#🎜🎜 #
>>> np.empty((3,4)) array([[ 1., 1., 1., 1.], [ 1., 1., 1., 1.], [ 1., 1., 1., 1.]])#🎜 🎜#
정수 0 또는 1을 사용합니다
>>> np.ones((3,4),int) array([[1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1]]) >>> np.zeros((3,4),int) array([[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]])
ndarray를 생성하는 범위 명령을 모방합니다. #🎜🎜 #>>> np.arange(2,10,2) # 开始,结束,步长
array([2, 4, 6, 8])
관련 추천 : "
"
2. ndarray 속성 보기 및 작동:>>> a = [[1,2,3,4,5],[6,7,8,9,0]] >>> b = np.array(a) >>> b.ndim #维度个数(看几维) 2 >>> b.shape #维度大小(看具体长宽) (5,2) >>>b.dtype dtype('int32')ndarray가 생성될 때 속성 지정:
>>> np.array([1,2,3,4,5],dtype=np.float64) array([ 1., 2., 3., 4., 5.]) >>> np.zeros((2,5),dtype=np.int32) array([[0, 0, 0, 0, 0], [0, 0, 0, 0, 0]])속성 전송: # 🎜🎜#
>>> a = np.array([1,2,3,4,5],dtype=np.float64) >>> a array([ 1., 2., 3., 4., 5.]) >>> a.astype(np.int32) array([1, 2, 3, 4, 5])
3. 간단한 작업:
일괄 작업: #🎜 🎜#
>>> a = np.array([1,2,3,4,5],dtype=np.int32) >>> a array([1, 2, 3, 4, 5]) >>> a + a array([ 2, 4, 6, 8, 10]) >>> a * a array([ 1, 4, 9, 16, 25]) >>> a - 2 array([-1, 0, 1, 2, 3]) >>> a / 2 array([ 0.5, 1. , 1.5, 2. , 2.5]) #等等# 🎜🎜#치수 변경:
>>> a = np.array([[1,2,3,4,5],[6,7,8,9,0]],dtype=np.int32)
>>> a
array([[1, 2, 3, 4, 5],
[6, 7, 8, 9, 0]])
>>> a.reshape((5,2))
array([[1, 2],
[3, 4],
[5, 6],
[7, 8],
[9, 0]])
>>> a = np.array([[1,2,3,4,5],[6,7,8,9,0]],dtype=np.int32)
>>> a
array([[1, 2, 3, 4, 5],
[6, 7, 8, 9, 0]])
>>> a.transpose()
array([[1, 6],
[2, 7],
[3, 8],
[4, 9],
[5, 0]])
# 🎜🎜#Disrupt(한 차원만 중단할 수 있음):
>>> a = np.array([[1,2],[3,4],[5,6],[7,8],[9,0]],dtype=np.int32) >>> a array([[1, 2], [3, 4], [5, 6], [7, 8], [9, 0]]) >>> np.random.shuffle(a) >>> a array([[9, 0], [1, 2], [7, 8], [5, 6], [3, 4]])4. 슬라이싱 및 인덱싱 :
# 🎜🎜#1차원 배열:
>>> a = np.array(range(10)) >>> a array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) >>> a[3] 3 >>> a[2:9:2] array([2, 4, 6, 8])
다차원 배열: #🎜 🎜#
>>> a = np.array([[1,2,3,4,5],[6,7,8,9,0],[11,12,13,14,15]],dtype=np.int32) >>> a array([[ 1, 2, 3, 4, 5], [ 6, 7, 8, 9, 0], [11, 12, 13, 14, 15]]) >>> a[:, 1:4] array([[ 2, 3, 4], [ 7, 8, 9], [12, 13, 14]])
조건부 색인 :
>>> a = np.array([[1,2,3,4,5],[6,7,8,9,0],[11,12,13,14,15]],dtype=np.int32) >>> a array([[ 1, 2, 3, 4, 5], [ 6, 7, 8, 9, 0], [11, 12, 13, 14, 15]]) >>> a > 5 array([[False, False, False, False, False], [ True, True, True, True, False], [ True, True, True, True, True]], dtype=bool) >>> a[a>5] array([ 6, 7, 8, 9, 11, 12, 13, 14, 15]) >>> a%3 == 0 Out[128]: array([[False, False, True, False, False], [ True, False, False, True, True], [False, True, False, False, True]], dtype=bool) >>> a[a%3 == 0] array([ 3, 6, 9, 0, 12, 15])
5. 기능(핵심 지식 포인트 수가 많음)#🎜 🎜#
계산 기능: np.ceil(): 向上最接近的整数,参数是 number 或 array
np.floor(): 向下最接近的整数,参数是 number 或 array
np.rint(): 四舍五入,参数是 number 或 array
np.isnan(): 判断元素是否为 NaN(Not a Number),参数是 number 或 array
np.multiply(): 元素相乘,参数是 number 或 array
np.divide(): 元素相除,参数是 number 或 array
np.abs():元素的绝对值,参数是 number 或 array
np.where(condition, x, y): 三元运算符,x if condition else y
>>> a = np.random.randn(3,4)
>>> a
array([[ 0.37091654, 0.53809133, -0.99434523, -1.21496837],
[ 0.00701986, 1.65776152, 0.41319601, 0.41356973],
[-0.32922342, 1.07773886, -0.27273258, 0.29474435]])
>>> np.ceil(a)
array([[ 1., 1., -0., -1.],
[ 1., 2., 1., 1.],
[-0., 2., -0., 1.]])
>>> np.where(a>0, 10, 0)
array([[10, 10, 0, 0],
[10, 10, 10, 10],
[ 0, 10, 0, 10]])
np.mean():所有元素的平均值
np.sum():所有元素的和,参数是 number 或 array
np.max():所有元素的最大值
np.min():所有元素的最小值,参数是 number 或 array
np.std():所有元素的标准差
np.var():所有元素的方差,参数是 number 或 array
np.argmax():最大值的下标索引值,
np.argmin():最小值的下标索引值,参数是 number 或 array
np.cumsum():返回一个一维数组,每个元素都是之前所有元素的累加和
np.cumprod():返回一个一维数组,每个元素都是之前所有元素的累乘积,参数是 number 或 array
>>> a = np.arange(12).reshape(3,4).transpose()
>>> a
array([[ 0, 4, 8],
[ 1, 5, 9],
[ 2, 6, 10],
[ 3, 7, 11]])
>>> np.mean(a)
5.5
>>> np.sum(a)
66
>>> np.argmax(a)
11
>>> np.std(a)
3.4520525295346629
>>> np.cumsum(a)
array([ 0, 4, 12, 13, 18, 27, 29, 35, 45, 48, 55, 66], dtype=int32)
np.any(): 至少有一个元素满足指定条件,返回True np.all(): 所有的元素满足指定条件,返回True >>> a = np.random.randn(2,3) >>> a array([[-0.65750548, 2.24801371, -0.26593284], [ 0.31447911, -1.0215645 , -0.4984958 ]]) >>> np.any(a>0) True >>> np.all(a>0) False#🎜 🎜#중복 항목 제거:
np.unique(): 去重 >>> a = np.array([[1,2,3],[2,3,4]]) >>> a array([[1, 2, 3], [2, 3, 4]]) >>> np.unique(a) array([1, 2, 3, 4])
위 내용은 Python numpy의 간단한 사용법 요약의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!