찾다
백엔드 개발파이썬 튜토리얼파이썬에서 csv 파일을 읽는 방법

파이썬에서 csv 파일을 읽는 방법

Python은 csv 파일을 읽고 씁니다

머리말#🎜 🎜 #

쉼표로 구분된 값 ​​(CSV, 구분 문자가 쉼표가 아닐 수도 있기 때문에 문자로 구분된 값이라고도 함), 해당 파일은 표 형식 데이터(숫자)를 저장합니다. ) 일반 텍스트 및 텍스트로). 일반 텍스트는 파일이 일련의 문자이며 이진수처럼 해석되어야 하는 데이터를 포함하지 않음을 의미합니다. CSV 파일은 일종의 개행 문자로 구분된 여러 개의 레코드로 구성됩니다. 각 레코드는 필드로 구성되며 필드 사이의 구분 기호는 다른 문자 또는 문자열(가장 일반적으로 쉼표 또는 탭)입니다. 일반적으로 모든 레코드는 정확히 동일한 필드 순서를 가지며, 숫자인 경우 수동으로 숫자로 변환해야 합니다.

행 단위로 데이터 읽기

The 열은 반자 쉼표 또는 탭으로 구분됩니다. 일반적으로 반자 쉼표#🎜 🎜# 일반적으로 각 줄의 시작 부분에는 공백이 없습니다. 첫 번째 줄은 속성 열 사이에 공백이 없습니다. 간격으로 구분 기호가 있는 데이터 열에는 행 사이에 빈 줄이 없습니다.

줄 사이에 빈 줄이 없는 것이 매우 중요합니다. 데이터 세트에서 빈 줄이 있거나 행 끝에 공백이 있으면 일반적으로 읽을 때 오류가 발생합니다. 데이터가 [목록 인덱스가 범위를 벗어났습니다.] 오류가 발생합니다. 추신: 저는 이 오류에 여러 번 속았습니다!

Python I/O를 사용하여 CSV 파일 쓰기 및 읽기

Python I/O를 사용하여 CSV 파일 쓰기#🎜 🎜#

다음은 작성자 소스에서 "birthweight.dat" 저출생체중 dat 파일을 다운로드 받아 가공하여 csv 파일로 저장하는 코드입니다.

import csv
import os
import numpy as np
import random
import requests
# name of data file
# 数据集名称
birth_weight_file = 'birth_weight.csv'
# download data and create data file if file does not exist in current directory
# 如果当前文件夹下没有birth_weight.csv数据集则下载dat文件并生成csv文件
if not os.path.exists(birth_weight_file):
    birthdata_url = 'https://github.com/nfmcclure/tensorflow_cookbook/raw/master/01_Introduction/07_Working_with_Data_Sources/birthweight_data/birthweight.dat'
    birth_file = requests.get(birthdata_url)
    birth_data = birth_file.text.split('\r\n')
    # split分割函数,以一行作为分割函数,windows中换行符号为'\r\n',每一行后面都有一个'\r\n'符号。
    birth_header = birth_data[0].split('\t')
    # 每一列的标题,标在第一行,即是birth_data的第一个数据。并使用制表符作为划分。
    birth_data = [[float(x) for x in y.split('\t') if len(x) >= 1] for y in birth_data[1:] if len(y) >= 1]
    print(np.array(birth_data).shape)
    # (189, 9)
    # 此为list数据形式不是numpy数组不能使用np,shape函数,但是我们可以使用np.array函数将list对象转化为numpy数组后使用shape属性进行查看。
    with open(birth_weight_file, "w", newline='') as f:
    # with open(birth_weight_file, "w") as f:
        writer = csv.writer(f)
        writer.writerows([birth_header])
        writer.writerows(birth_data)
        f.close()

일반적인 실수 목록 색인이 범위를 벗어났습니다

우리가 해야 할 핵심 사항 f: 이 명령문은 open(birth_weight_file, "w", newline='')과 같습니다. csv 파일에 쓰는 것을 나타냅니다. newline='' 매개변수가 추가되지 않으면 공백을 개행 문자로 사용하는 것을 의미합니다. 대신 with open(birth_weight_file, "w")를 f: 문으로 사용하세요. 생성된 테이블에 빈 행이 나타납니다.

파이썬에서 csv 파일을 읽는 방법

python I/O를 사용하여 csv 데이터를 읽고 쓸 뿐만 아니라 다른 방법을 사용하여 csv 데이터를 읽고 쓰거나 인터넷에서 csv를 다운로드할 수도 있습니다. 각 데이터 세트 후에는 각 행 뒤에 공백이 있는지 또는 추가 빈 줄이 있는지 확인해야 합니다. 데이터 분석 중 판단에 영향을 미치는 불필요한 오류를 피하세요.

Python I/O를 사용하여 csv 파일 읽기

Python I/O 방법을 사용하여 읽을 때 새 목록을 만듭니다. 데이터는 행부터 열 순서로 빈 List 객체에 저장됩니다(C 언어의 2차원 배열과 유사). 이를 numpy 배열로 변환해야 하는 경우 np.array를 사용할 수도 있습니다. (목록 이름) 개체 간을 변환합니다.

birth_data = []
with open(birth_weight_file) as csvfile:
    csv_reader = csv.reader(csvfile)  # 使用csv.reader读取csvfile中的文件
    birth_header = next(csv_reader)  # 读取第一行每一列的标题
    for row in csv_reader:  # 将csv 文件中的数据保存到birth_data中
        birth_data.append(row)
birth_data = [[float(x) for x in row] for row in birth_data]  # 将数据从string形式转换为float形式
birth_data = np.array(birth_data)  # 将list数组转化成array数组便于查看数据结构
birth_header = np.array(birth_header)
print(birth_data.shape)  # 利用.shape查看结构。
print(birth_header.shape)
#
# (189, 9)
# (9,)
파이썬에서 csv 파일을 읽는 방법

Pandas를 사용하여 CSV 파일 읽기

import pandas as pd
csv_data = pd.read_csv('birth_weight.csv')  # 读取训练数据
print(csv_data.shape)  # (189, 9)
N = 5
csv_batch_data = csv_data.tail(N)  # 取后5条数据
print(csv_batch_data.shape)  # (5, 9)
train_batch_data = csv_batch_data[list(range(3, 6))]  # 取这20条数据的3到5列值(索引从0开始)
print(train_batch_data)
#      RACE  SMOKE  PTL
# 184   0.0    0.0  0.0
# 185   0.0    0.0  1.0
# 186   0.0    1.0  0.0
# 187   0.0    0.0  0.0
# 188   0.0    0.0  1.0

Tensorflow를 사용하여 CSV 파일 읽기

#🎜 🎜# 저는 다양한 유형의 데이터를 처리하기 위해 주로 Tensorflow를 사용하므로, Tensorflow를 사용하여 데이터를 읽는 것에 대해서는 길게 설명하지 않겠습니다. 아래에 코드를 붙여넣겠습니다.

'''使用Tensorflow读取csv数据'''
filename = 'birth_weight.csv'
file_queue = tf.train.string_input_producer([filename])  # 设置文件名队列,这样做能够批量读取文件夹中的文件
reader = tf.TextLineReader(skip_header_lines=1)  # 使用tensorflow文本行阅读器,并且设置忽略第一行
key, value = reader.read(file_queue)
defaults = [[0.], [0.], [0.], [0.], [0.], [0.], [0.], [0.], [0.]]  # 设置列属性的数据格式
LOW, AGE, LWT, RACE, SMOKE, PTL, HT, UI, BWT = tf.decode_csv(value, defaults)
# 将读取的数据编码为我们设置的默认格式
vertor_example = tf.stack([AGE, LWT, RACE, SMOKE, PTL, HT, UI])  # 读取得到的中间7列属性为训练特征
vertor_label = tf.stack([BWT])  # 读取得到的BWT值表示训练标签
# 用于给取出的数据添加上batch_size维度,以批处理的方式读出数据。可以设置批处理数据大小,是否重复读取数据,容量大小,队列末尾大小,读取线程等属性。
example_batch, label_batch = tf.train.shuffle_batch([vertor_example, vertor_label], batch_size=10, capacity=100, min_after_dequeue=10)
# 初始化Session
with tf.Session() as sess:
    coord = tf.train.Coordinator()  # 线程管理器
    threads = tf.train.start_queue_runners(coord=coord)
    print(sess.run(tf.shape(example_batch)))  # [10  7]
    print(sess.run(tf.shape(label_batch)))  # [10  1]
    print(sess.run(example_batch)[3])  # [ 19.  91.   0.   1.   1.   0.   1.]
    coord.request_stop()
    coord.join(threads)
'''
对于使用所有Tensorflow的I/O操作来说开启和关闭线程管理器都是必要的操作
with tf.Session() as sess:
    coord = tf.train.Coordinator()  # 线程管理器
    threads = tf.train.start_queue_runners(coord=coord)
    #  Your code here~
    coord.request_stop()
    coord.join(threads)
'''

파이썬을 사용하여 파일을 읽는 다른 방법이 있습니다. 여기서는 세 가지를 소개하고 수시로 보완할 예정입니다.

위 내용은 파이썬에서 csv 파일을 읽는 방법의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.
파이썬 스크립트가 UNIX에서 실행되지 않는 일반적인 이유는 무엇입니까?파이썬 스크립트가 UNIX에서 실행되지 않는 일반적인 이유는 무엇입니까?Apr 28, 2025 am 12:18 AM

Python 스크립트가 UNIX 시스템에서 실행할 수없는 이유는 다음과 같습니다. 1) CHMOD XYOUR_SCRIPT.PY를 사용하여 실행 권한을 부여하는 권한이 불충분합니다. 2) 잘못되거나 누락 된 Shebang 라인은 #!/usr/bin/envpython을 사용해야합니다. 3) 잘못된 환경 변수 설정, os.environ 디버깅을 인쇄 할 수 있습니다. 4) 잘못된 Python 버전을 사용하여 Shebang 행 또는 명령 줄에 버전을 지정할 수 있습니다. 5) 가상 환경을 사용하여 종속성을 분리하는 의존성 문제; 6) 구문 오류, python-mpy_compileyour_script.py를 사용하여 감지하십시오.

파이썬 어레이를 사용하는 것이 목록을 사용하는 것보다 더 적절한 시나리오의 예를 제시하십시오.파이썬 어레이를 사용하는 것이 목록을 사용하는 것보다 더 적절한 시나리오의 예를 제시하십시오.Apr 28, 2025 am 12:15 AM

파이썬 어레이를 사용하는 것은 목록보다 많은 양의 숫자 데이터를 처리하는 데 더 적합합니다. 1) 배열 더 많은 메모리를 저장, 2) 배열은 숫자 값으로 작동하는 것이 더 빠르며, 3) 배열 힘 유형 일관성, 4) 배열은 C 배열과 호환되지만 목록만큼 유연하고 편리하지 않습니다.

Python에서 목록 대 배열 사용의 성능은 무엇입니까?Python에서 목록 대 배열 사용의 성능은 무엇입니까?Apr 28, 2025 am 12:10 AM

더 나은 orfelexibility 및 mixdatatatatytys, 탁월한 정비 계산 모래 데이터 세트.

Numpy는 대형 배열의 메모리 관리를 어떻게 처리합니까?Numpy는 대형 배열의 메모리 관리를 어떻게 처리합니까?Apr 28, 2025 am 12:07 AM

numpymanagesmemoryforlargearraysefficiedviews, 사본 및 메모리-맵핑 파일

모듈 가져와 목록 또는 배열을 가져와야합니까?모듈 가져와 목록 또는 배열을 가져와야합니까?Apr 28, 2025 am 12:06 AM

ListSinpythondonoTrequireimportingAmodule, whilearraysfromtheArrayModuledOneedAnimport.1) ListSareBuilt-in, Versatile, andCanholdixedDatatypes.2) arraysarraysaremorememorememeMorememeMorememeMorememeMorememeMorememeMorememeMoremeMoremeTeverTopeTeveTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeveTeTeTeTeTeTeTeTete가 필요합니다.

파이썬 어레이에 어떤 데이터 유형을 저장할 수 있습니까?파이썬 어레이에 어떤 데이터 유형을 저장할 수 있습니까?Apr 27, 2025 am 12:11 AM

PythonlistsCanstoreAnyDatAtype, ArrayModuLearRaysStoreOneType 및 NUMPYARRAYSAREFORNUMERICALPUTATION.1) LISTSAREVERSATILEBUTLESSMEMORY-EFFICENT.2) ARRAYMODUERRAYRAYRAYSARRYSARESARESARESARESARESARESAREDOREDORY-UNFICEDONOUNEOUSDATA.3) NumpyArraysUraysOrcepperperperperperperperperperperperperperperperferperferperferferpercient

파이썬 어레이에 잘못된 데이터 유형의 값을 저장하려고하면 어떻게됩니까?파이썬 어레이에 잘못된 데이터 유형의 값을 저장하려고하면 어떻게됩니까?Apr 27, 2025 am 12:10 AM

whenyouattempttoreavalueofthewrongdatatypeinapythonaphonarray, thisiSdueTotheArrayModule의 stricttyPeenforcement, theAllElementStobeofthesAmetypecified bythetypecode.forperformancersassion, arraysaremoreficats the thraysaremoreficats thetheperfication the thraysaremorefications는

Python Standard Library의 일부는 무엇입니까? 목록 또는 배열은 무엇입니까?Python Standard Library의 일부는 무엇입니까? 목록 또는 배열은 무엇입니까?Apr 27, 2025 am 12:03 AM

Pythonlistsarepartoftsandardlardlibrary, whileraysarenot.listsarebuilt-in, 다재다능하고, 수집 할 수있는 반면, arraysarreprovidedByTearRaymoduledlesscommonlyusedDuetolimitedFunctionality.

See all articles

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

Video Face Swap

Video Face Swap

완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

뜨거운 도구

PhpStorm 맥 버전

PhpStorm 맥 버전

최신(2018.2.1) 전문 PHP 통합 개발 도구

VSCode Windows 64비트 다운로드

VSCode Windows 64비트 다운로드

Microsoft에서 출시한 강력한 무료 IDE 편집기

SublimeText3 Mac 버전

SublimeText3 Mac 버전

신 수준의 코드 편집 소프트웨어(SublimeText3)

맨티스BT

맨티스BT

Mantis는 제품 결함 추적을 돕기 위해 설계된 배포하기 쉬운 웹 기반 결함 추적 도구입니다. PHP, MySQL 및 웹 서버가 필요합니다. 데모 및 호스팅 서비스를 확인해 보세요.

드림위버 CS6

드림위버 CS6

시각적 웹 개발 도구