찾다
백엔드 개발파이썬 튜토리얼Python 데이터 분석가로서 배워야 할 것

데이터 분석가는 데이터 엔지니어 Datician['detʃən]의 일종으로 업계 데이터를 수집, 분류, 분석하고 이를 기반으로 업계 연구, 평가, 예측을 전문적으로 수행하는 다양한 산업 분야의 전문가를 의미합니다. .

Python 데이터 분석가로서 배워야 할 것

1. 수학 지식 (추천 학습: Python 비디오 튜토리얼)#🎜 🎜#

수학적 지식은 데이터 분석가에게 있어서 기본 지식입니다. 후배 데이터 분석가의 경우 기술 통계와 관련된 몇 가지 기본 내용을 이해하고 공식을 계산하는 특정 능력을 갖추는 것은 보너스입니다.

선임 데이터 분석가에게는 통계 모델에 대한 지식이 필수이며, 선형 대수학(주로 행렬 계산 관련 지식)에 대한 어느 정도의 이해가 있는 것이 가장 좋습니다.

데이터 마이닝 엔지니어는 통계 외에도 다양한 알고리즘을 능숙하게 사용할 수 있어야 하며 수학에 대한 요구 사항이 가장 높습니다.

따라서 데이터 분석을 배우는 데 반드시 아주 좋은 수학 능력이 필요한 것은 아닙니다. 발전하려는 방향에 따라 달라지는 한, 데이터 분석에는 특히 소녀의 경우 '문학적' 측면도 있습니다. 한 방향으로 발전할 수 있습니다.

2. 분석 도구

후배 데이터 분석가에게는 Excel을 다룰 수 있는 능력이 필수이며 능숙하게 사용할 수 있어야 합니다. 피벗 테이블과 수식은 장점입니다. 또한, 통계분석 도구인 SPSS도 배워야 합니다.

고급 데이터 분석가에게는 분석 도구를 사용하는 것이 핵심 역량입니다. VBA는 기본적으로 SPSS/SAS/R 중 하나 이상의 분석 도구(예: Matlab)를 능숙하게 사용해야 합니다. ) 상황에 따라 다릅니다.

데이터 마이닝 엔지니어라면...뭐, 그냥 엑셀을 쓸 줄 아는 것만으로도 충분해요.

3. 프로그래밍 언어

후배 데이터 분석가의 경우 필요한 경우 SQL 쿼리, Hadoop 및 Hive 쿼리를 작성할 수 있습니다. 기본적으로는 괜찮습니다.

선임 데이터 분석가라면 SQL 외에도 절반의 노력으로 2배의 결과를 얻을 수 있는 데이터를 얻고 처리할 수 있는 Python을 배워야 합니다. 물론 다른 프로그래밍 언어도 가능합니다.

데이터마이닝 엔지니어라면 Hadoop, Python/Java/C++ 중 하나 이상을 숙지하고 Shell을 사용할 줄 알아야 합니다... 한마디로 프로그래밍 언어는 확실히 핵심 역량입니다. 데이터 마이닝 엔지니어.

4. 비즈니스 이해

비즈니스 이해는 데이터 분석가의 모든 작업의 ​​기초라고 해도 과언이 아닙니다. 데이터 수집 계획 및 지표 선택, 심지어 최종 결론에 대한 통찰력까지 모두 데이터 분석가의 비즈니스 자체에 대한 이해에 달려 있습니다.

후배 데이터 분석가의 주요 업무는 데이터를 추출하고 간단한 차트를 만드는 것뿐 아니라, 약간의 통찰력과 결론을 비즈니스에 대한 기본적인 이해만으로도 충분합니다.

선임 데이터 분석가는 비즈니스에 대한 깊은 이해가 필요하며, 실제 비즈니스에 도움이 될 수 있는 데이터를 기반으로 효과적인 의견을 추출할 수 있어야 합니다.

데이터마이닝 엔지니어는 비즈니스에 대한 기본적인 이해만으로도 충분하지만, 여전히 기술 역량을 발휘하는 데 초점이 맞춰져 있어야 합니다.

좋은 데이터 분석가에게는 비즈니스 능력이 필수입니다. 이미 특정 산업에 대해 잘 알고 있다면 데이터 분석을 배우는 것이 매우 올바른 접근 방식입니다. 이제 막 졸업하고 업계 경험이 없더라도 천천히 발전할 수 있으니 걱정할 필요가 없습니다.

4. 논리적 사고

이 능력에 대해서는 이전 기사에서 거의 언급되지 않았기 때문에 이번에 별도로 이야기하겠습니다.

주니어 데이터 분석가의 경우 논리적 사고는 주로 데이터 분석 프로세스의 모든 단계의 목적에 반영되어 어떤 목표를 달성하기 위해 어떤 수단을 사용해야 하는지를 파악합니다.

선임 데이터 분석가의 경우 완전하고 효과적인 분석 프레임워크 구축, 분석 대상 간의 상관 관계 이해, 각 지표 변경의 원인과 결과 및 그에 따른 영향을 파악하는 데 있어 논리적 사고가 주로 반영됩니다. 사업에.

데이터마이닝 엔지니어에게 논리적 사고는 비즈니스 관련 분석 업무에만 반영되는 것이 아니라, 알고리즘 논리, 프로그램 논리 등도 포함되므로 논리적 사고에 대한 요구사항도 가장 높습니다.

5. 데이터 시각화

데이터 시각화는 매우 높은 수준으로 들리지만 실제로는 광범위한 내용을 다루고 있습니다. 그 안에 담긴 데이터도 데이터 시각화라고 할 수 있으니 꼭 필요한 기술인 것 같아요.

후배 데이터 분석가의 경우 Excel과 PPT를 사용하여 기본 차트와 보고서를 만들고 데이터를 명확하게 표시할 수 있다면 목표를 달성한 것입니다.

선임 데이터 분석가는 더 나은 데이터 시각화 방법을 모색하고, 더 효과적인 데이터 시각화 도구를 사용하고, 실제 요구에 따라 단순하거나 복잡하지만 청중이 이해하기에 적합한 데이터 시각화 콘텐츠를 만들어야 합니다. 보다.

데이터 마이닝 엔지니어의 경우 일부 데이터 시각화 도구를 이해하고 필요에 따라 복잡한 시각적 차트를 만드는 것이 필요하지만 일반적으로 미화 문제를 너무 많이 고려할 필요는 없습니다.

6. 조정 및 커뮤니케이션

후배 데이터 분석가의 경우 비즈니스를 이해하고, 데이터를 찾고, 보고서를 설명하는 데 모두 업계 사람들과의 커뮤니케이션이 필요합니다. 다양한 부서 사람을 대하려면 커뮤니케이션 능력이 매우 중요합니다.

선임 데이터 분석가의 경우 독립적으로 프로젝트를 주도하거나 제품과 협력해야 합니다. 따라서 의사소통 기술 외에도 프로젝트 조정 기술도 필요합니다.

데이터 마이닝 엔지니어의 경우 사람과 소통하는 기술적인 측면이 더 많고, 비즈니스적인 측면은 상대적으로 적으며, 의사소통 및 조정에 대한 요구 사항은 상대적으로 낮습니다.

7.빠른 학습

데이터 분석을 어떤 방향으로 하든, 중급이든 고급이든 빠르게 학습할 수 있는 능력, 비즈니스 로직 학습, 산업 지식 학습, 기술 도구 학습, 분석 프레임워크 학습 능력이 필요합니다. ...데이터 분석 분야는 배울 내용이 무궁무진하고, 누구나 배움을 잊지 않는 마음이 있어야 합니다.

빨리 배우는 것이 매우 중요합니다. 이 업계에 빨리 진입해야만 기회를 포착하고 더 많은 경험과 기회를 얻을 수 있습니다. 기초가 전혀 없고 하루라도 빨리 데이터 분석 업계에 진출하고 싶다면 빅데이터 전문 교육기관을 선택하는 것이 좋은 선택이다. 학습 주기를 단축하고 학습 효율성을 높이세요!

더 많은 Python 관련 기술 기사를 보려면 Python Tutorial 칼럼을 방문하여 알아보세요!

위 내용은 Python 데이터 분석가로서 배워야 할 것의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.
Python vs. C : 학습 곡선 및 사용 편의성Python vs. C : 학습 곡선 및 사용 편의성Apr 19, 2025 am 12:20 AM

Python은 배우고 사용하기 쉽고 C는 더 강력하지만 복잡합니다. 1. Python Syntax는 간결하며 초보자에게 적합합니다. 동적 타이핑 및 자동 메모리 관리를 사용하면 사용하기 쉽지만 런타임 오류가 발생할 수 있습니다. 2.C는 고성능 응용 프로그램에 적합한 저수준 제어 및 고급 기능을 제공하지만 학습 임계 값이 높고 수동 메모리 및 유형 안전 관리가 필요합니다.

Python vs. C : 메모리 관리 및 제어Python vs. C : 메모리 관리 및 제어Apr 19, 2025 am 12:17 AM

Python과 C는 메모리 관리 및 제어에 상당한 차이가 있습니다. 1. Python은 참조 계산 및 쓰레기 수집을 기반으로 자동 메모리 관리를 사용하여 프로그래머의 작업을 단순화합니다. 2.C는 메모리 수동 관리가 필요하므로 더 많은 제어를 제공하지만 복잡성과 오류 위험을 증가시킵니다. 선택할 언어는 프로젝트 요구 사항 및 팀 기술 스택을 기반으로해야합니다.

과학 컴퓨팅을위한 파이썬 : 상세한 모양과학 컴퓨팅을위한 파이썬 : 상세한 모양Apr 19, 2025 am 12:15 AM

과학 컴퓨팅에서 Python의 응용 프로그램에는 데이터 분석, 머신 러닝, 수치 시뮬레이션 및 시각화가 포함됩니다. 1.numpy는 효율적인 다차원 배열 및 수학적 함수를 제공합니다. 2. Scipy는 Numpy 기능을 확장하고 최적화 및 선형 대수 도구를 제공합니다. 3. 팬더는 데이터 처리 및 분석에 사용됩니다. 4. matplotlib는 다양한 그래프와 시각적 결과를 생성하는 데 사용됩니다.

파이썬 및 C : 올바른 도구 찾기파이썬 및 C : 올바른 도구 찾기Apr 19, 2025 am 12:04 AM

Python 또는 C를 선택할 것인지 프로젝트 요구 사항에 따라 다릅니다. 1) Python은 간결한 구문 및 풍부한 라이브러리로 인해 빠른 개발, 데이터 과학 및 스크립팅에 적합합니다. 2) C는 컴파일 및 수동 메모리 관리로 인해 시스템 프로그래밍 및 게임 개발과 같은 고성능 및 기본 제어가 필요한 시나리오에 적합합니다.

데이터 과학 및 기계 학습을위한 파이썬데이터 과학 및 기계 학습을위한 파이썬Apr 19, 2025 am 12:02 AM

Python은 데이터 과학 및 기계 학습에 널리 사용되며 주로 단순성과 강력한 라이브러리 생태계에 의존합니다. 1) 팬더는 데이터 처리 및 분석에 사용되며, 2) Numpy는 효율적인 수치 계산을 제공하며 3) Scikit-Learn은 기계 학습 모델 구성 및 최적화에 사용되며 이러한 라이브러리는 Python을 데이터 과학 및 기계 학습에 이상적인 도구로 만듭니다.

Python 학습 : 2 시간의 일일 연구가 충분합니까?Python 학습 : 2 시간의 일일 연구가 충분합니까?Apr 18, 2025 am 12:22 AM

하루에 2 시간 동안 파이썬을 배우는 것으로 충분합니까? 목표와 학습 방법에 따라 다릅니다. 1) 명확한 학습 계획을 개발, 2) 적절한 학습 자원 및 방법을 선택하고 3) 실습 연습 및 검토 및 통합 연습 및 검토 및 통합,이 기간 동안 Python의 기본 지식과 고급 기능을 점차적으로 마스터 할 수 있습니다.

웹 개발을위한 파이썬 : 주요 응용 프로그램웹 개발을위한 파이썬 : 주요 응용 프로그램Apr 18, 2025 am 12:20 AM

웹 개발에서 Python의 주요 응용 프로그램에는 Django 및 Flask 프레임 워크 사용, API 개발, 데이터 분석 및 시각화, 머신 러닝 및 AI 및 성능 최적화가 포함됩니다. 1. Django 및 Flask 프레임 워크 : Django는 복잡한 응용 분야의 빠른 개발에 적합하며 플라스크는 소형 또는 고도로 맞춤형 프로젝트에 적합합니다. 2. API 개발 : Flask 또는 DjangorestFramework를 사용하여 RESTFULAPI를 구축하십시오. 3. 데이터 분석 및 시각화 : Python을 사용하여 데이터를 처리하고 웹 인터페이스를 통해 표시합니다. 4. 머신 러닝 및 AI : 파이썬은 지능형 웹 애플리케이션을 구축하는 데 사용됩니다. 5. 성능 최적화 : 비동기 프로그래밍, 캐싱 및 코드를 통해 최적화

Python vs. C : 성능과 효율성 탐색Python vs. C : 성능과 효율성 탐색Apr 18, 2025 am 12:20 AM

Python은 개발 효율에서 C보다 낫지 만 C는 실행 성능이 높습니다. 1. Python의 간결한 구문 및 풍부한 라이브러리는 개발 효율성을 향상시킵니다. 2.C의 컴파일 유형 특성 및 하드웨어 제어는 실행 성능을 향상시킵니다. 선택할 때는 프로젝트 요구에 따라 개발 속도 및 실행 효율성을 평가해야합니다.

See all articles

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

AI Hentai Generator

AI Hentai Generator

AI Hentai를 무료로 생성하십시오.

뜨거운 도구

PhpStorm 맥 버전

PhpStorm 맥 버전

최신(2018.2.1) 전문 PHP 통합 개발 도구

SublimeText3 Mac 버전

SublimeText3 Mac 버전

신 수준의 코드 편집 소프트웨어(SublimeText3)

Eclipse용 SAP NetWeaver 서버 어댑터

Eclipse용 SAP NetWeaver 서버 어댑터

Eclipse를 SAP NetWeaver 애플리케이션 서버와 통합합니다.

에디트플러스 중국어 크랙 버전

에디트플러스 중국어 크랙 버전

작은 크기, 구문 강조, 코드 프롬프트 기능을 지원하지 않음

DVWA

DVWA

DVWA(Damn Vulnerable Web App)는 매우 취약한 PHP/MySQL 웹 애플리케이션입니다. 주요 목표는 보안 전문가가 법적 환경에서 자신의 기술과 도구를 테스트하고, 웹 개발자가 웹 응용 프로그램 보안 프로세스를 더 잘 이해할 수 있도록 돕고, 교사/학생이 교실 환경 웹 응용 프로그램에서 가르치고 배울 수 있도록 돕는 것입니다. 보안. DVWA의 목표는 다양한 난이도의 간단하고 간단한 인터페이스를 통해 가장 일반적인 웹 취약점 중 일부를 연습하는 것입니다. 이 소프트웨어는