GDAL(Geospatial Data Abstraction Library)은 X/MIT 라이선스에 따른 오픈 소스 래스터 공간 데이터 변환 라이브러리입니다. 지원되는 다양한 파일 형식을 표현하기 위해 추상 데이터 모델을 활용합니다. 또한 데이터 변환 및 처리를 위한 다양한 명령줄 도구도 있습니다.
방법 1: URL https://www.lfd.uci.edu/~gohlke/pythonlibs/#gdal에서 Python 버전에 해당하는 whl 파일을 다운로드하고 pip의 전체 경로로 설치합니다. 명령줄(Windows 방식)에 whl 파일을 설치합니다. (추천 학습: Python 비디오 튜토리얼)
방법 2:
명령줄 conda/pip search gdal을 사용하여 버전을 확인하고, 적절한 버전(내 2.2.4)을 선택하고, 그렇지 않은 경우 방법 1을 사용하세요. .
명령줄 conda/pip install gdal=버전 번호, 버전 번호를 주의해서 추가하세요. 그렇지 않으면 이전 버전이 설치될 수 있습니다(windows/linux에서 사용 가능).
gdal 패키지는 래스터 데이터를 처리하는 데 사용되며 ogr은 벡터 데이터를 처리하는 데 사용됩니다.
다음 프로그램은 래스터 처리를 위한 gdal의 간단한 응용 프로그램입니다.
from osgeo import gdal import numpy as np np.set_printoptions(threshold=np.inf)#使print大量数据不用符号...代替而显示所有 dataset = gdal.Open("E:/RS_data/caijian1214/caijian.tif") print(dataset.GetDescription())#数据描述 print(dataset.RasterCount)#波段数 cols=dataset.RasterXSize#图像长度 rows=(dataset.RasterYSize)#图像宽度 xoffset=cols/2 yoffset=rows/2 band = dataset.GetRasterBand(3)#取第三波段 r=band.ReadAsArray(xoffset,yoffset,1000,1000)#从数据的中心位置位置开始,取1000行1000列数据 band = dataset.GetRasterBand(2) g=band.ReadAsArray(xoffset,yoffset,1000,1000) band = dataset.GetRasterBand(1) b=band.ReadAsArray(xoffset,yoffset,1000,1000) import cv2 import matplotlib.pyplot as plt img2=cv2.merge([r,g,b]) plt.imshow(img2) plt.xticks([]),plt.yticks([]) # 不显示坐标轴 plt.show()
더 많은 Python 관련 기술 기사를 보려면 Python Tutorial 칼럼을 방문하여 알아보세요!
위 내용은 Python에 gdal을 설치하는 방법의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

thedifferencebet weenaforloopandawhileloopinpythonisthataforloopisusured wherleationsisknortiStiskNowninAdvance, whileLeOpisUssed whileLoopisUssedStoBeCheckedThoBeCheckedTherfeTefeateThinumberofiTeRations.1) forloopsareIdealFerenceCecenceS

Python에서는 반복의 수가 알려진 경우에 루프가 적합한 반면, 반복 횟수가 알려지지 않고 더 많은 제어가 필요한 경우 루프는 적합합니다. 1) 루프의 경우 간결하고 피해자 코드가있는 목록, 문자열 등과 같은 시퀀스에 적합합니다. 2) 조건에 따라 루프를 제어하거나 사용자 입력을 기다릴 때 루프가 더 적절하지만 무한 루프를 피하기 위해주의를 기울여야합니다. 3) 성능 측면에서 For 루프는 약간 빠르지 만 차이는 일반적으로 크지 않습니다. 올바른 루프 유형을 선택하면 코드의 효율성과 가독성이 향상 될 수 있습니다.

파이썬에서 목록은 5 가지 방법을 통해 병합 될 수 있습니다. 1) 단순하고 직관적 인 연산자를 사용하여 작은 목록에 적합합니다. 2) Extend () 메소드를 사용하여 자주 업데이트 해야하는 목록에 적합한 원본 목록을 직접 수정하십시오. 3) 목록 분석 공식, 요소에 대한 간결하고 운영; 4) 효율적인 메모리에 IterTools.chain () 함수를 사용하여 대형 데이터 세트에 적합합니다. 5) * 연산자 및 Zip () 함수를 사용하여 요소를 짝을 이루어야하는 장면에 적합합니다. 각 방법에는 특정 용도 및 장점 및 단점이 있으며 선택할 때 프로젝트 요구 사항 및 성능을 고려해야합니다.

Forloopsareusedwhendumberofiterationsisknown, whileloopsareusediltilaconditionismet.1) forloopsareIdealfecquenceslikelists, idingsyntax likes'forfruitinfruits : print (fruit) '

Toconcatenatealistoflistsinpython, usextend, listcomprehensions, itertools.chain, orrecursiveFunctions.1) extendMethodistRaightForwardButverbose.2) ListComprehensionsArecisancisancisancisancisanceciancectionforlargerdatasets.3) itertools.chainismory-lefforforlargedas

Tomergelistsinpython, youcanusethe operator, extendmethod, listcomprehension, oritertools.chain, 각각은 각각의 지위를 불러 일으킨다

Python 3에서는 다양한 방법을 통해 두 개의 목록을 연결할 수 있습니다. 1) 작은 목록에 적합하지만 큰 목록에는 비효율적입니다. 2) 메모리 효율이 높지만 원래 목록을 수정하는 큰 목록에 적합한 확장 방법을 사용합니다. 3) 원래 목록을 수정하지 않고 여러 목록을 병합하는 데 적합한 * 운영자 사용; 4) 메모리 효율이 높은 대형 데이터 세트에 적합한 itertools.chain을 사용하십시오.

join () 메소드를 사용하는 것은 Python의 목록에서 문자열을 연결하는 가장 효율적인 방법입니다. 1) join () 메소드를 사용하여 효율적이고 읽기 쉽습니다. 2)주기는 큰 목록에 비효율적으로 운영자를 사용합니다. 3) List Comprehension과 Join ()의 조합은 변환이 필요한 시나리오에 적합합니다. 4) READE () 방법은 다른 유형의 감소에 적합하지만 문자열 연결에 비효율적입니다. 완전한 문장은 끝납니다.


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

에디트플러스 중국어 크랙 버전
작은 크기, 구문 강조, 코드 프롬프트 기능을 지원하지 않음

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

SublimeText3 영어 버전
권장 사항: Win 버전, 코드 프롬프트 지원!

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.