>백엔드 개발 >파이썬 튜토리얼 >Python이 인증 코드를 인식하는 방법

Python이 인증 코드를 인식하는 방법

anonymity
anonymity원래의
2019-06-17 16:09:415613검색

파이썬 크롤러가 일부 웹사이트의 인증 코드를 크롤링할 때 인증 코드 인식 문제가 발생할 수 있습니다. 요즘 인증 코드는 대부분 4가지 범주로 나뉩니다. 1. 인증 코드 계산 2. 슬라이더 인증 코드 3. 이미지 인식 인증 코드 4 , 음성 인증 코드

Python이 인증 코드를 인식하는 방법

여기서 인증 코드를 인식하는 것이 주요 목적입니다. 인식되는 것은 간단한 인증 코드입니다. 인식률을 높이고 인식을 더 정확하게 하려면 많은 비용을 들여야 합니다. 자신만의 글꼴 라이브러리를 훈련하는 데 에너지가 필요합니다.

인증 코드 인식에는 일반적으로 다음 단계가 포함됩니다.

2. 이진화

3. 테두리 제거(있는 경우)

4. 문자 자르기 또는 기울기 수정

6. 트레이닝 글꼴 라이브러리

7. 인식

이 6단계 중 처음 3단계는 기본입니다. 필요 여부에 따라 4~5단계를 선택할 수 있습니다. 반드시 인증코드 절단 및 인식이 필요한 것은 아닙니다. 속도는 많이 오르고 때로는 줄어들 것입니다

사용되는 주요 Python 라이브러리: Pillow(파이썬 이미지 처리 라이브러리), OpenCV(고급 이미지 처리 라이브러리), pytesseract(인식 라이브러리)


다음 사례 사용법 :

1. 인식할 인증코드 이미지를 스크립트와 동일한 레벨의 img 폴더에 넣고, out_img 폴더2, python3 파일명

3을 생성하고, 이진화, 노이즈 감소 등의 단계를 거쳐 이미지가 생성됩니다. out_img 폴더에 저장되며 최종 인식 결과가 화면에 인쇄됩니다

전체 QR 코드 인식 코드:

from PIL import Image
from pytesseract import *
from fnmatch import fnmatch
from queue import Queue
import matplotlib.pyplot as plt
import cv2
import time
import os
def clear_border(img,img_name):
  '''去除边框
  '''
  filename = './out_img/' + img_name.split('.')[0] + '-clearBorder.jpg'
  h, w = img.shape[:2]
  for y in range(0, w):
    for x in range(0, h):
      # if y ==0 or y == w -1 or y == w - 2:
      if y < 4 or y > w -4:
        img[x, y] = 255
      # if x == 0 or x == h - 1 or x == h - 2:
      if x < 4 or x > h - 4:
        img[x, y] = 255
  cv2.imwrite(filename,img)
  return img
def interference_line(img, img_name):
  &#39;&#39;&#39;
  干扰线降噪
  &#39;&#39;&#39;
  filename =  &#39;./out_img/&#39; + img_name.split(&#39;.&#39;)[0] + &#39;-interferenceline.jpg&#39;
  h, w = img.shape[:2]
  # !!!opencv矩阵点是反的
  # img[1,2] 1:图片的高度,2:图片的宽度
  for y in range(1, w - 1):
    for x in range(1, h - 1):
      count = 0
      if img[x, y - 1] > 245:
        count = count + 1
      if img[x, y + 1] > 245:
        count = count + 1
      if img[x - 1, y] > 245:
        count = count + 1
      if img[x + 1, y] > 245:
        count = count + 1
      if count > 2:
        img[x, y] = 255
  cv2.imwrite(filename,img)
  return img
def interference_point(img,img_name, x = 0, y = 0):
    """点降噪
    9邻域框,以当前点为中心的田字框,黑点个数
    :param x:
    :param y:
    :return:
    """
    filename =  &#39;./out_img/&#39; + img_name.split(&#39;.&#39;)[0] + &#39;-interferencePoint.jpg&#39;
    # todo 判断图片的长宽度下限
    cur_pixel = img[x,y]# 当前像素点的值
    height,width = img.shape[:2]
    for y in range(0, width - 1):
      for x in range(0, height - 1):
        if y == 0:  # 第一行
            if x == 0:  # 左上顶点,4邻域
                # 中心点旁边3个点
                sum = int(cur_pixel) \
                      + int(img[x, y + 1]) \
                      + int(img[x + 1, y]) \
                      + int(img[x + 1, y + 1])
                if sum <= 2 * 245:
                  img[x, y] = 0
            elif x == height - 1:  # 右上顶点
                sum = int(cur_pixel) \
                      + int(img[x, y + 1]) \
                      + int(img[x - 1, y]) \
                      + int(img[x - 1, y + 1])
                if sum <= 2 * 245:
                  img[x, y] = 0
            else:  # 最上非顶点,6邻域
                sum = int(img[x - 1, y]) \
                      + int(img[x - 1, y + 1]) \
                      + int(cur_pixel) \
                      + int(img[x, y + 1]) \
                      + int(img[x + 1, y]) \
                      + int(img[x + 1, y + 1])
                if sum <= 3 * 245:
                  img[x, y] = 0
        elif y == width - 1:  # 最下面一行
            if x == 0:  # 左下顶点
                # 中心点旁边3个点
                sum = int(cur_pixel) \
                      + int(img[x + 1, y]) \
                      + int(img[x + 1, y - 1]) \
                      + int(img[x, y - 1])
                if sum <= 2 * 245:
                  img[x, y] = 0
            elif x == height - 1:  # 右下顶点
                sum = int(cur_pixel) \
                      + int(img[x, y - 1]) \
                      + int(img[x - 1, y]) \
                      + int(img[x - 1, y - 1])
                if sum <= 2 * 245:
                  img[x, y] = 0
            else:  # 最下非顶点,6邻域
                sum = int(cur_pixel) \
                      + int(img[x - 1, y]) \
                      + int(img[x + 1, y]) \
                      + int(img[x, y - 1]) \
                      + int(img[x - 1, y - 1]) \
                      + int(img[x + 1, y - 1])
                if sum <= 3 * 245:
                  img[x, y] = 0
        else:  # y不在边界
            if x == 0:  # 左边非顶点
                sum = int(img[x, y - 1]) \
                      + int(cur_pixel) \
                      + int(img[x, y + 1]) \
                      + int(img[x + 1, y - 1]) \
                      + int(img[x + 1, y]) \
                      + int(img[x + 1, y + 1])
                if sum <= 3 * 245:
                  img[x, y] = 0
            elif x == height - 1:  # 右边非顶点
                sum = int(img[x, y - 1]) \
                      + int(cur_pixel) \
                      + int(img[x, y + 1]) \
                      + int(img[x - 1, y - 1]) \
                      + int(img[x - 1, y]) \
                      + int(img[x - 1, y + 1])
                if sum <= 3 * 245:
                  img[x, y] = 0
            else:  # 具备9领域条件的
                sum = int(img[x - 1, y - 1]) \
                      + int(img[x - 1, y]) \
                      + int(img[x - 1, y + 1]) \
                      + int(img[x, y - 1]) \
                      + int(cur_pixel) \
                      + int(img[x, y + 1]) \
                      + int(img[x + 1, y - 1]) \
                      + int(img[x + 1, y]) \
                      + int(img[x + 1, y + 1])
                if sum <= 4 * 245:
                  img[x, y] = 0
    cv2.imwrite(filename,img)
    return img
def _get_dynamic_binary_image(filedir, img_name):
  &#39;&#39;&#39;
  自适应阀值二值化
  &#39;&#39;&#39;
  filename =   &#39;./out_img/&#39; + img_name.split(&#39;.&#39;)[0] + &#39;-binary.jpg&#39;
  img_name = filedir + &#39;/&#39; + img_name
  print(&#39;.....&#39; + img_name)
  im = cv2.imread(img_name)
  im = cv2.cvtColor(im,cv2.COLOR_BGR2GRAY)
  th1 = cv2.adaptiveThreshold(im, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 21, 1)
  cv2.imwrite(filename,th1)
  return th1
def _get_static_binary_image(img, threshold = 140):
  &#39;&#39;&#39;
  手动二值化
  &#39;&#39;&#39;
  img = Image.open(img)
  img = img.convert(&#39;L&#39;)
  pixdata = img.load()
  w, h = img.size
  for y in range(h):
    for x in range(w):
      if pixdata[x, y] < threshold:
        pixdata[x, y] = 0
      else:
        pixdata[x, y] = 255
  return img
def cfs(im,x_fd,y_fd):
  &#39;&#39;&#39;用队列和集合记录遍历过的像素坐标代替单纯递归以解决cfs访问过深问题
  &#39;&#39;&#39;
  # print(&#39;**********&#39;)
  xaxis=[]
  yaxis=[]
  visited =set()
  q = Queue()
  q.put((x_fd, y_fd))
  visited.add((x_fd, y_fd))
  offsets=[(1, 0), (0, 1), (-1, 0), (0, -1)]#四邻域
  while not q.empty():
      x,y=q.get()
      for xoffset,yoffset in offsets:
          x_neighbor,y_neighbor = x+xoffset,y+yoffset
          if (x_neighbor,y_neighbor) in (visited):
              continue  # 已经访问过了
          visited.add((x_neighbor, y_neighbor))
          try:
              if im[x_neighbor, y_neighbor] == 0:
                  xaxis.append(x_neighbor)
                  yaxis.append(y_neighbor)
                  q.put((x_neighbor,y_neighbor))
          except IndexError:
              pass
  # print(xaxis)
  if (len(xaxis) == 0 | len(yaxis) == 0):
    xmax = x_fd + 1
    xmin = x_fd
    ymax = y_fd + 1
    ymin = y_fd
  else:
    xmax = max(xaxis)
    xmin = min(xaxis)
    ymax = max(yaxis)
    ymin = min(yaxis)
    #ymin,ymax=sort(yaxis)
  return ymax,ymin,xmax,xmin
def detectFgPix(im,xmax):
  &#39;&#39;&#39;搜索区块起点
  &#39;&#39;&#39;
  h,w = im.shape[:2]
  for y_fd in range(xmax+1,w):
      for x_fd in range(h):
          if im[x_fd,y_fd] == 0:
              return x_fd,y_fd
def CFS(im):
  &#39;&#39;&#39;切割字符位置
  &#39;&#39;&#39;
  zoneL=[]#各区块长度L列表
  zoneWB=[]#各区块的X轴[起始,终点]列表
  zoneHB=[]#各区块的Y轴[起始,终点]列表
  xmax=0#上一区块结束黑点横坐标,这里是初始化
  for i in range(10):
      try:
          x_fd,y_fd = detectFgPix(im,xmax)
          # print(y_fd,x_fd)
          xmax,xmin,ymax,ymin=cfs(im,x_fd,y_fd)
          L = xmax - xmin
          H = ymax - ymin
          zoneL.append(L)
          zoneWB.append([xmin,xmax])
          zoneHB.append([ymin,ymax])
      except TypeError:
          return zoneL,zoneWB,zoneHB
  return zoneL,zoneWB,zoneHB
def cutting_img(im,im_position,img,xoffset = 1,yoffset = 1):
  filename =  &#39;./out_img/&#39; + img.split(&#39;.&#39;)[0]
  # 识别出的字符个数
  im_number = len(im_position[1])
  # 切割字符
  for i in range(im_number):
    im_start_X = im_position[1][i][0] - xoffset
    im_end_X = im_position[1][i][1] + xoffset
    im_start_Y = im_position[2][i][0] - yoffset
    im_end_Y = im_position[2][i][1] + yoffset
    cropped = im[im_start_Y:im_end_Y, im_start_X:im_end_X]
    cv2.imwrite(filename + &#39;-cutting-&#39; + str(i) + &#39;.jpg&#39;,cropped)
def main():
  filedir = &#39;./easy_img&#39;
  for file in os.listdir(filedir):
    if fnmatch(file, &#39;*.jpeg&#39;):
      img_name = file
      # 自适应阈值二值化
      im = _get_dynamic_binary_image(filedir, img_name)
      # 去除边框
      im = clear_border(im,img_name)
      # 对图片进行干扰线降噪
      im = interference_line(im,img_name)
      # 对图片进行点降噪
      im = interference_point(im,img_name)
      # 切割的位置
      im_position = CFS(im)
      maxL = max(im_position[0])
      minL = min(im_position[0])
      # 如果有粘连字符,如果一个字符的长度过长就认为是粘连字符,并从中间进行切割
      if(maxL > minL + minL * 0.7):
        maxL_index = im_position[0].index(maxL)
        minL_index = im_position[0].index(minL)
        # 设置字符的宽度
        im_position[0][maxL_index] = maxL // 2
        im_position[0].insert(maxL_index + 1, maxL // 2)
        # 设置字符X轴[起始,终点]位置
        im_position[1][maxL_index][1] = im_position[1][maxL_index][0] + maxL // 2
        im_position[1].insert(maxL_index + 1, [im_position[1][maxL_index][1] + 1, im_position[1][maxL_index][1] + 1 + maxL // 2])
        # 设置字符的Y轴[起始,终点]位置
        im_position[2].insert(maxL_index + 1, im_position[2][maxL_index])
      # 切割字符,要想切得好就得配置参数,通常 1 or 2 就可以
      cutting_img(im,im_position,img_name,1,1)
      # 识别验证码
      cutting_img_num = 0
      for file in os.listdir(&#39;./out_img&#39;):
        str_img = &#39;&#39;
        if fnmatch(file, &#39;%s-cutting-*.jpg&#39; % img_name.split(&#39;.&#39;)[0]):
          cutting_img_num += 1
      for i in range(cutting_img_num):
        try:
          file = &#39;./out_img/%s-cutting-%s.jpg&#39; % (img_name.split(&#39;.&#39;)[0], i)
          # 识别验证码
          str_img = str_img + image_to_string(Image.open(file),lang = &#39;eng&#39;, config=&#39;-psm 10&#39;) #单个字符是10,一行文本是7
        except Exception as err:
          pass
      print(&#39;切图:%s&#39; % cutting_img_num)
      print(&#39;识别为:%s&#39; % str_img)
if __name__ == &#39;__main__&#39;:
  main()

위 내용은 Python이 인증 코드를 인식하는 방법의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

성명:
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.