찾다
백엔드 개발파이썬 튜토리얼Tensorflow 분류자 프로젝트의 사용자 정의 데이터를 읽는 방법 소개(코드 예)

이 글은 Tensorflow 분류기 프로젝트(코드 예제)에 대한 사용자 정의 데이터를 읽는 방법을 소개합니다. 필요한 친구들이 참고할 수 있기를 바랍니다. .

Tensorflow 분류자 프로젝트 사용자 정의 데이터 읽기

Tensorflow 공식 웹사이트의 데모에 따라 분류자 프로젝트의 코드를 입력한 후 작업이 성공적으로 이루어졌고 결과도 좋았습니다. 하지만 결국 자체적으로 데이터를 학습시켜야 하기 때문에 커스텀 데이터를 로드할 준비를 하려고 했는데, 자세한 읽기 과정 없이 데모에만 fashion_mnist.load_data()가 등장했습니다. 읽는 과정을 여기에 기록했습니다.

먼저 사용해야 할 모듈에 대해 언급하겠습니다:

import os

import keras
import matplotlib.pyplot as plt
from PIL import Image
from keras.preprocessing.image import ImageDataGenerator
from sklearn.model_selection import train_test_split

이미지 분류기 프로젝트, 먼저 처리하려는 이미지의 해상도가 무엇인지 결정합니다. 여기의 예는 30픽셀입니다.

IMG_SIZE_X = 30
IMG_SIZE_Y = 30

두 번째 , 이미지의 메소드 디렉터리를 결정합니다.

image_path = r'D:\Projects\ImageClassifier\data\set'
path = ".\data"
# 你也可以使用相对路径的方式
# image_path =os.path.join(path, "set")

디렉터리의 구조는 다음과 같습니다.

Tensorflow 분류자 프로젝트의 사용자 정의 데이터를 읽는 방법 소개(코드 예)

해당 label.txt는 다음과 같습니다.

动漫
风景
美女
物语
樱花

다음에는 labels.txt가 옵니다.

label_name = "labels.txt"
label_path = os.path.join(path, label_name)
class_names = np.loadtxt(label_path, type(""))

여기에서는 단순화를 위해 numpy의 loadtxt 함수를 직접 사용합니다.

이후 이미지 데이터가 공식적으로 처리되고 내부에 댓글이 작성됩니다.

re_load = False
re_build = False
# re_load = True
re_build = True

data_name = "data.npz"
data_path = os.path.join(path, data_name)
model_name = "model.h5"
model_path = os.path.join(path, model_name)

count = 0

# 这里判断是否存在序列化之后的数据,re_load是一个开关,是否强制重新处理,测试用,可以去除。
if not os.path.exists(data_path) or re_load:
    labels = []
    images = []
    print('Handle images')
    # 由于label.txt是和图片防止目录的分类目录一一对应的,即每个子目录的目录名就是labels.txt里的一个label,所以这里可以通过读取class_names的每一项去拼接path后读取
    for index, name in enumerate(class_names):
        # 这里是拼接后的子目录path
        classpath = os.path.join(image_path, name)
        # 先判断一下是否是目录
        if not os.path.isdir(classpath):
            continue
        # limit是测试时候用的这里可以去除
        limit = 0
        for image_name in os.listdir(classpath):
            if limit >= max_size:
                break
            # 这里是拼接后的待处理的图片path
            imagepath = os.path.join(classpath, image_name)
            count = count + 1
            limit = limit + 1
            # 利用Image打开图片
            img = Image.open(imagepath)
            # 缩放到你最初确定要处理的图片分辨率大小
            img = img.resize((IMG_SIZE_X, IMG_SIZE_Y))
            # 转为灰度图片,这里彩色通道会干扰结果,并且会加大计算量
            img = img.convert("L")
            # 转为numpy数组
            img = np.array(img)
            # 由(30,30)转为(1,30,30)(即`channels_first`),当然你也可以转换为(30,30,1)(即`channels_last`)但为了之后预览处理后的图片方便这里采用了(1,30,30)的格式存放
            img = np.reshape(img, (1, IMG_SIZE_X, IMG_SIZE_Y))
            # 这里利用循环生成labels数据,其中存放的实际是class_names中对应元素的索引
            labels.append([index])
            # 添加到images中,最后统一处理
            images.append(img)
            # 循环中一些状态的输出,可以去除
            print("{} class: {} {} limit: {} {}"
                  .format(count, index + 1, class_names[index], limit, imagepath))
    # 最后一次性将images和labels都转换成numpy数组
    npy_data = np.array(images)
    npy_labels = np.array(labels)
    # 处理数据只需要一次,所以我们选择在这里利用numpy自带的方法将处理之后的数据序列化存储
    np.savez(data_path, x=npy_data, y=npy_labels)
    print("Save images by npz")
else:
    # 如果存在序列化号的数据,便直接读取,提高速度
    npy_data = np.load(data_path)["x"]
    npy_labels = np.load(data_path)["y"]
    print("Load images by npz")
image_data = npy_data
labels_data = npy_labels

이 시점에서 원본 데이터의 처리 및 전처리만 완료되었으며 결과는 다음과 같습니다. 데모에서 반환된 결과와 동일합니다 fashion_mnist.load_data(). 코드는 다음과 같습니다.

# 最后一步就是将原始数据分成训练数据和测试数据
train_images, test_images, train_labels, test_labels = \
    train_test_split(image_data, labels_data, test_size=0.2, random_state=6)

관련 정보를 인쇄하는 방법도 여기에 첨부되어 있습니다:

print("_________________________________________________________________")
print("%-28s %-s" % ("Name", "Shape"))
print("=================================================================")
print("%-28s %-s" % ("Image Data", image_data.shape))
print("%-28s %-s" % ("Labels Data", labels_data.shape))
print("=================================================================")

print('Split train and test data,p=%')
print("_________________________________________________________________")
print("%-28s %-s" % ("Name", "Shape"))
print("=================================================================")
print("%-28s %-s" % ("Train Images", train_images.shape))
print("%-28s %-s" % ("Test Images", test_images.shape))
print("%-28s %-s" % ("Train Labels", train_labels.shape))
print("%-28s %-s" % ("Test Labels", test_labels.shape))
print("=================================================================")

나중에 정규화하는 것을 잊지 마세요:

print("Normalize images")
train_images = train_images / 255.0
test_images = test_images / 255.0

마지막으로, 사용자 정의 데이터를 읽는 전체 코드가 첨부됩니다:

import os

import keras
import matplotlib.pyplot as plt
from PIL import Image
from keras.layers import *
from keras.models import *
from keras.optimizers import Adam
from keras.preprocessing.image import ImageDataGenerator
from sklearn.model_selection import train_test_split

os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
# 支持中文
plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号
re_load = False
re_build = False
# re_load = True
re_build = True
epochs = 50
batch_size = 5
count = 0
max_size = 2000000000
IMG_SIZE_X = 30
IMG_SIZE_Y = 30
np.random.seed(9277)
image_path = r'D:\Projects\ImageClassifier\data\set'
path = ".\data"
data_name = "data.npz"
data_path = os.path.join(path, data_name)
model_name = "model.h5"
model_path = os.path.join(path, model_name)
label_name = "labels.txt"
label_path = os.path.join(path, label_name)
class_names = np.loadtxt(label_path, type(""))
print('Load class names')
if not os.path.exists(data_path) or re_load:
    labels = []
    images = []
    print('Handle images')
    for index, name in enumerate(class_names):
        classpath = os.path.join(image_path, name)
        if not os.path.isdir(classpath):
            continue
        limit = 0
        for image_name in os.listdir(classpath):
            if limit >= max_size:
                break
            imagepath = os.path.join(classpath, image_name)
            count = count + 1
            limit = limit + 1
            img = Image.open(imagepath)
            img = img.resize((30, 30))
            img = img.convert("L")
            img = np.array(img)
            img = np.reshape(img, (1, 30, 30))
            # img = skimage.io.imread(imagepath, as_grey=True)
            # if img.shape[2] != 3:
            #     print("{} shape is {}".format(image_name, img.shape))
            #     continue
            # data = transform.resize(img, (IMG_SIZE_X, IMG_SIZE_Y))
            labels.append([index])
            images.append(img)
            print("{} class: {} {} limit: {} {}"
                  .format(count, index + 1, class_names[index], limit, imagepath))
    npy_data = np.array(images)
    npy_labels = np.array(labels)
    np.savez(data_path, x=npy_data, y=npy_labels)
    print("Save images by npz")
else:
    npy_data = np.load(data_path)["x"]
    npy_labels = np.load(data_path)["y"]
    print("Load images by npz")
image_data = npy_data
labels_data = npy_labels
print("_________________________________________________________________")
print("%-28s %-s" % ("Name", "Shape"))
print("=================================================================")
print("%-28s %-s" % ("Image Data", image_data.shape))
print("%-28s %-s" % ("Labels Data", labels_data.shape))
print("=================================================================")
train_images, test_images, train_labels, test_labels = \
    train_test_split(image_data, labels_data, test_size=0.2, random_state=6)
print('Split train and test data,p=%')
print("_________________________________________________________________")
print("%-28s %-s" % ("Name", "Shape"))
print("=================================================================")
print("%-28s %-s" % ("Train Images", train_images.shape))
print("%-28s %-s" % ("Test Images", test_images.shape))
print("%-28s %-s" % ("Train Labels", train_labels.shape))
print("%-28s %-s" % ("Test Labels", test_labels.shape))
print("=================================================================")

# 归一化
# 我们将这些值缩小到 0 到 1 之间,然后将其馈送到神经网络模型。为此,将图像组件的数据类型从整数转换为浮点数,然后除以 255。以下是预处理图像的函数:
# 务必要以相同的方式对训练集和测试集进行预处理:
print("Normalize images")
train_images = train_images / 255.0
test_images = test_images / 255.0

위 내용은 Tensorflow 분류자 프로젝트의 사용자 정의 데이터를 읽는 방법 소개(코드 예)의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

성명
이 기사는 segmentfault에서 복제됩니다. 침해가 있는 경우 admin@php.cn으로 문의하시기 바랍니다. 삭제
Python vs. C : 주요 차이점 이해Python vs. C : 주요 차이점 이해Apr 21, 2025 am 12:18 AM

Python과 C는 각각 고유 한 장점이 있으며 선택은 프로젝트 요구 사항을 기반으로해야합니다. 1) Python은 간결한 구문 및 동적 타이핑으로 인해 빠른 개발 및 데이터 처리에 적합합니다. 2) C는 정적 타이핑 및 수동 메모리 관리로 인해 고성능 및 시스템 프로그래밍에 적합합니다.

Python vs. C : 프로젝트를 위해 어떤 언어를 선택해야합니까?Python vs. C : 프로젝트를 위해 어떤 언어를 선택해야합니까?Apr 21, 2025 am 12:17 AM

Python 또는 C를 선택하는 것은 프로젝트 요구 사항에 따라 다릅니다. 1) 빠른 개발, 데이터 처리 및 프로토 타입 설계가 필요한 경우 Python을 선택하십시오. 2) 고성능, 낮은 대기 시간 및 근접 하드웨어 제어가 필요한 경우 C를 선택하십시오.

파이썬 목표에 도달 : 매일 2 시간의 힘파이썬 목표에 도달 : 매일 2 시간의 힘Apr 20, 2025 am 12:21 AM

매일 2 시간의 파이썬 학습을 투자하면 프로그래밍 기술을 효과적으로 향상시킬 수 있습니다. 1. 새로운 지식 배우기 : 문서를 읽거나 자습서를 시청하십시오. 2. 연습 : 코드를 작성하고 완전한 연습을합니다. 3. 검토 : 배운 내용을 통합하십시오. 4. 프로젝트 실무 : 실제 프로젝트에서 배운 것을 적용하십시오. 이러한 구조화 된 학습 계획은 파이썬을 체계적으로 마스터하고 경력 목표를 달성하는 데 도움이 될 수 있습니다.

2 시간 극대화 : 효과적인 파이썬 학습 전략2 시간 극대화 : 효과적인 파이썬 학습 전략Apr 20, 2025 am 12:20 AM

2 시간 이내에 Python을 효율적으로 학습하는 방법 : 1. 기본 지식을 검토하고 Python 설치 및 기본 구문에 익숙한 지 확인하십시오. 2. 변수, 목록, 기능 등과 같은 파이썬의 핵심 개념을 이해합니다. 3. 예제를 사용하여 마스터 기본 및 고급 사용; 4. 일반적인 오류 및 디버깅 기술을 배우십시오. 5. 목록 이해력 사용 및 PEP8 스타일 안내서와 같은 성능 최적화 및 모범 사례를 적용합니다.

Python과 C : The Hight Language 중에서 선택Python과 C : The Hight Language 중에서 선택Apr 20, 2025 am 12:20 AM

Python은 초보자 및 데이터 과학에 적합하며 C는 시스템 프로그래밍 및 게임 개발에 적합합니다. 1. 파이썬은 간단하고 사용하기 쉽고 데이터 과학 및 웹 개발에 적합합니다. 2.C는 게임 개발 및 시스템 프로그래밍에 적합한 고성능 및 제어를 제공합니다. 선택은 프로젝트 요구와 개인적인 이익을 기반으로해야합니다.

Python vs. C : 프로그래밍 언어의 비교 분석Python vs. C : 프로그래밍 언어의 비교 분석Apr 20, 2025 am 12:14 AM

Python은 데이터 과학 및 빠른 개발에 더 적합한 반면 C는 고성능 및 시스템 프로그래밍에 더 적합합니다. 1. Python Syntax는 간결하고 학습하기 쉽고 데이터 처리 및 과학 컴퓨팅에 적합합니다. 2.C는 복잡한 구문을 가지고 있지만 성능이 뛰어나고 게임 개발 및 시스템 프로그래밍에 종종 사용됩니다.

하루 2 시간 : 파이썬 학습의 잠재력하루 2 시간 : 파이썬 학습의 잠재력Apr 20, 2025 am 12:14 AM

파이썬을 배우기 위해 하루에 2 시간을 투자하는 것이 가능합니다. 1. 새로운 지식 배우기 : 목록 및 사전과 같은 1 시간 안에 새로운 개념을 배우십시오. 2. 연습 및 연습 : 1 시간을 사용하여 소규모 프로그램 작성과 같은 프로그래밍 연습을 수행하십시오. 합리적인 계획과 인내를 통해 짧은 시간에 Python의 핵심 개념을 마스터 할 수 있습니다.

Python vs. C : 학습 곡선 및 사용 편의성Python vs. C : 학습 곡선 및 사용 편의성Apr 19, 2025 am 12:20 AM

Python은 배우고 사용하기 쉽고 C는 더 강력하지만 복잡합니다. 1. Python Syntax는 간결하며 초보자에게 적합합니다. 동적 타이핑 및 자동 메모리 관리를 사용하면 사용하기 쉽지만 런타임 오류가 발생할 수 있습니다. 2.C는 고성능 응용 프로그램에 적합한 저수준 제어 및 고급 기능을 제공하지만 학습 임계 값이 높고 수동 메모리 및 유형 안전 관리가 필요합니다.

See all articles

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

Video Face Swap

Video Face Swap

완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

뜨거운 도구

드림위버 CS6

드림위버 CS6

시각적 웹 개발 도구

WebStorm Mac 버전

WebStorm Mac 버전

유용한 JavaScript 개발 도구

ZendStudio 13.5.1 맥

ZendStudio 13.5.1 맥

강력한 PHP 통합 개발 환경

SecList

SecList

SecLists는 최고의 보안 테스터의 동반자입니다. 보안 평가 시 자주 사용되는 다양한 유형의 목록을 한 곳에 모아 놓은 것입니다. SecLists는 보안 테스터에게 필요할 수 있는 모든 목록을 편리하게 제공하여 보안 테스트를 더욱 효율적이고 생산적으로 만드는 데 도움이 됩니다. 목록 유형에는 사용자 이름, 비밀번호, URL, 퍼징 페이로드, 민감한 데이터 패턴, 웹 셸 등이 포함됩니다. 테스터는 이 저장소를 새로운 테스트 시스템으로 간단히 가져올 수 있으며 필요한 모든 유형의 목록에 액세스할 수 있습니다.

SublimeText3 Mac 버전

SublimeText3 Mac 버전

신 수준의 코드 편집 소프트웨어(SublimeText3)