찾다
백엔드 개발파이썬 튜토리얼Python의 numpy에서 일반적으로 사용되는 함수에 대한 자세한 소개

이 글은 Python의 numpy에서 일반적으로 사용되는 함수에 대해 자세히 소개합니다. 이는 특정 참조 가치가 있으므로 도움이 필요한 친구에게 도움이 되기를 바랍니다.

Numpy는 Python의 과학 컴퓨팅과 관련된 라이브러리입니다. 이 기사에서는 numpy를 사용하기 전에 소개해야 하는 몇 가지 기능을 소개합니다. 일반적으로 numpy를 np로 단순화합니다.

1.np.arange(n): 0에서 n-1까지의 정수를 생성합니다.

2.a.reshape(m,n): a를 m개의 행과 n개의 열이 있는 행렬로 재정의합니다.

3.a.shape: a의 행과 열을 인쇄합니다.

4.a.ndim: a의 차원을 구합니다.

5.a.size: a의 요소 수를 출력합니다.

Python의 numpy에서 일반적으로 사용되는 함수에 대한 자세한 소개

6.np.zeros((m,n)): m개의 행과 n개의 열로 구성된 영 행렬을 생성합니다. 튜플이 함수에 전달되어야 한다는 점에 유의해야 합니다. 이때 생성된 행렬 0은 시스템 기본 데이터 타입이 부동소수점(floating point)이기 때문에 뒤에 소수점이 붙는다.

7.np.ones((k,m,n),dtype=np.int32): m개의 행과 n개의 열로 구성된 k 단위 행렬을 생성하며 행렬의 데이터 유형은 정수입니다.

8.np.arange(m,n,k): 단계 크기 k를 사용하여 m에서 n으로 슬라이스된 데이터를 생성합니다.

9.np.linspace(m,n,k): m부터 n까지의 데이터에서 동일한 간격으로 k개의 값을 가져옵니다.

Python의 numpy에서 일반적으로 사용되는 함수에 대한 자세한 소개

10. A와 B가 동일한 차원의 행렬인 경우 A*B는 A와 B 행렬의 해당 위치를 곱한 결과인 A.dot(B) 또는 np.dot( A, B) 반환되는 것은 행렬 곱셈의 결과입니다.

11.np.exp(A) 또는 np.sqrt(B): e의 B 거듭제곱과 행렬 B의 각 숫자의 제곱근을 각각 구합니다.

Python의 numpy에서 일반적으로 사용되는 함수에 대한 자세한 소개

12.np.floor(): 반올림합니다.

13.a.ravel(): 행렬 a를 벡터로 다시 늘입니다. 늘린 후 새 행렬로 모양을 바꿀 수 있습니다.

14.a.T: a의 전치 행렬을 구합니다.

15.a.reshape(n,-1) 또는 a.reshape(-1,n): 행렬의 행(열)을 결정한 후 해당 열(행)도 직접 결정하므로 -1을 입력합니다. 그게 캔이에요.

Python의 numpy에서 일반적으로 사용되는 함수에 대한 자세한 소개

16.np.hstack((a,b)): 행렬 a와 b를 가로로 결합합니다.

17.np.vstack((a,b)): 행렬 a와 b를 수직으로 접합합니다.

18.np.hsplit(a,n): 행렬 a를 측면에서 n 부분으로 자릅니다.

19.np.hsplit(a,(m,n)): a의 인덱스 m과 n 사이의 간격을 가로로 자릅니다.

20.np.vsplit(a,n): 행렬 a를 수직으로 n 부분으로 자릅니다.

21.np.hsplit(a,(m,n)): a의 인덱스 m과 n 사이의 간격을 세로로 자릅니다.

Python의 numpy에서 일반적으로 사용되는 함수에 대한 자세한 소개

Python의 numpy에서 일반적으로 사용되는 함수에 대한 자세한 소개

22. 행렬의 복사본:

b = a: 이때 얻은 b와 a의 주소는 완전히 동일합니다. 즉, a와 b는 단지 다른 이름일 뿐입니다. 동일한 행렬이 어떤 행렬에서든 작동하면 다른 행렬에서도 동일한 변화가 발생합니다.

b = a.view(): 이때 얻은 b의 주소는 a의 주소와 다르지만 b에 대한 연산을 수행하면 a가 변경됩니다.

b = a.copy(): 이때 얻는 것은 두 개의 완전히 독립된 행렬입니다.

Python의 numpy에서 일반적으로 사용되는 함수에 대한 자세한 소개

Python의 numpy에서 일반적으로 사용되는 함수에 대한 자세한 소개

23.b = np.tile(a,(m,n)): 행렬 a의 행 수를 m배로 확장하고 열 수를 n배로 확장합니다.

24.np.sort(a, axis=k): k 차원에서 행렬 a를 정렬합니다.

25.np.argsort(a): a의 인덱스 값을 오름차순으로 반환합니다(기본 배열은 오름차순입니다).

Python의 numpy에서 일반적으로 사용되는 함수에 대한 자세한 소개

위 내용은 Python의 numpy에서 일반적으로 사용되는 함수에 대한 자세한 소개의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

성명
이 기사는 segmentfault에서 복제됩니다. 침해가 있는 경우 admin@php.cn으로 문의하시기 바랍니다. 삭제
一文详解Python数据分析模块Numpy切片、索引和广播一文详解Python数据分析模块Numpy切片、索引和广播Apr 10, 2023 pm 02:56 PM

Numpy切片和索引ndarray对象的内容可以通过索引或切片来访问和修改,与 Python 中 list 的切片操作一样。ndarray 数组可以基于 0 ~ n-1 的下标进行索引,切片对象可以通过内置的 slice 函数,并设置 start, stop 及 step 参数进行,从原数组中切割出一个新数组。切片还可以包括省略号 …,来使选择元组的长度与数组的维度相同。 如果在行位置使用省略号,它将返回包含行中元素的 ndarray。高级索引整数数组索引以下实例获取数组中 (0,0),(1,1

如何利用 Go 语言进行数据分析和机器学习?如何利用 Go 语言进行数据分析和机器学习?Jun 10, 2023 am 09:21 AM

随着互联网技术的发展和大数据的普及,越来越多的公司和机构开始关注数据分析和机器学习。现在,有许多编程语言可以用于数据科学,其中Go语言也逐渐成为了一种不错的选择。虽然Go语言在数据科学上的应用不如Python和R那么广泛,但是它具有高效、并发和易于部署等特点,因此在某些场景中表现得非常出色。本文将介绍如何利用Go语言进行数据分析和机器学习

Python中的机器学习是什么?Python中的机器学习是什么?Jun 04, 2023 am 08:52 AM

近年来,机器学习(MachineLearning)成为了IT行业中最热门的话题之一,Python作为一种高效的编程语言,已经成为了许多机器学习实践者的首选。本文将会介绍Python中机器学习的概念、应用和实现。一、机器学习概念机器学习是一种让机器通过对数据的分析、学习和优化,自动改进性能的技术。其主要目的是让机器能够在数据中发现存在的规律,从而获得对未来

数据挖掘和数据分析的区别是什么?数据挖掘和数据分析的区别是什么?Dec 07, 2020 pm 03:16 PM

区别:1、“数据分析”得出的结论是人的智力活动结果,而“数据挖掘”得出的结论是机器从学习集【或训练集、样本集】发现的知识规则;2、“数据分析”不能建立数学模型,需要人工建模,而“数据挖掘”直接完成了数学建模。

Python量化交易实战:获取股票数据并做分析处理Python量化交易实战:获取股票数据并做分析处理Apr 15, 2023 pm 09:13 PM

量化交易(也称自动化交易)是一种应用数学模型帮助投资者进行判断,并且根据计算机程序发送的指令进行交易的投资方式,它极大地减少了投资者情绪波动的影响。量化交易的主要优势如下:快速检测客观、理性自动化量化交易的核心是筛选策略,策略也是依靠数学或物理模型来创造,把数学语言变成计算机语言。量化交易的流程是从数据的获取到数据的分析、处理。数据获取数据分析工作的第一步就是获取数据,也就是数据采集。获取数据的方式有很多,一般来讲,数据来源主要分为两大类:外部来源(外部购买、网络爬取、免费开源数据等)和内部来源

MySQL中的大数据分析技巧MySQL中的大数据分析技巧Jun 14, 2023 pm 09:53 PM

随着大数据时代的到来,越来越多的企业和组织开始利用大数据分析来帮助自己更好地了解其所面对的市场和客户,以便更好地制定商业策略和决策。而在大数据分析中,MySQL数据库也是经常被使用的一种工具。本文将介绍MySQL中的大数据分析技巧,为大家提供参考。一、使用索引进行查询优化索引是MySQL中进行查询优化的重要手段之一。当我们对某个列创建了索引后,MySQL就可

AI牵引工业软件新升级,数据分析与人工智能在探索中进化AI牵引工业软件新升级,数据分析与人工智能在探索中进化Jun 05, 2023 pm 04:04 PM

CAE和AI技术双融合已成为企业研发设计环节数字化转型的重要应用趋势,但企业数字化转型绝不仅是单个环节的优化,而是全流程、全生命周期的转型升级,数据驱动只有作用于各业务环节,才能真正助力企业持续发展。数字化浪潮席卷全球,作为数字经济核心驱动,数字技术逐步成为企业发展新动能,助推企业核心竞争力进化,在此背景下,数字化转型已成为所有企业的必选项和持续发展的前提,拥抱数字经济成为企业的共同选择。但从实际情况来看,面向C端的产业如零售电商、金融等领域在数字化方面走在前列,而以制造业、能源重工等为代表的传

为何军事人工智能初创公司近年来备受追捧为何军事人工智能初创公司近年来备受追捧Apr 13, 2023 pm 01:34 PM

俄乌冲突爆发 2 周后,数据分析公司 Palantir 的首席执行官亚历山大·卡普 (Alexander Karp) 向欧洲领导人提出了一项建议。在公开信中,他表示欧洲人应该在硅谷的帮助下实现武器现代化。Karp 写道,为了让欧洲“保持足够强大以战胜外国占领的威胁”,各国需要拥抱“技术与国家之间的关系,以及寻求摆脱根深蒂固的承包商控制的破坏性公司与联邦政府部门之间的资金关系”。而军队已经开始响应这项号召。北约于 6 月 30 日宣布,它正在创建一个 10 亿美元的创新基金,将投资于早期创业公司和

See all articles

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

AI Hentai Generator

AI Hentai Generator

AI Hentai를 무료로 생성하십시오.

뜨거운 도구

SublimeText3 중국어 버전

SublimeText3 중국어 버전

중국어 버전, 사용하기 매우 쉽습니다.

맨티스BT

맨티스BT

Mantis는 제품 결함 추적을 돕기 위해 설계된 배포하기 쉬운 웹 기반 결함 추적 도구입니다. PHP, MySQL 및 웹 서버가 필요합니다. 데모 및 호스팅 서비스를 확인해 보세요.

MinGW - Windows용 미니멀리스트 GNU

MinGW - Windows용 미니멀리스트 GNU

이 프로젝트는 osdn.net/projects/mingw로 마이그레이션되는 중입니다. 계속해서 그곳에서 우리를 팔로우할 수 있습니다. MinGW: GCC(GNU Compiler Collection)의 기본 Windows 포트로, 기본 Windows 애플리케이션을 구축하기 위한 무료 배포 가능 가져오기 라이브러리 및 헤더 파일로 C99 기능을 지원하는 MSVC 런타임에 대한 확장이 포함되어 있습니다. 모든 MinGW 소프트웨어는 64비트 Windows 플랫폼에서 실행될 수 있습니다.

스튜디오 13.0.1 보내기

스튜디오 13.0.1 보내기

강력한 PHP 통합 개발 환경

SublimeText3 Mac 버전

SublimeText3 Mac 버전

신 수준의 코드 편집 소프트웨어(SublimeText3)