찾다
백엔드 개발파이썬 튜토리얼Python의 순차 목록 알고리즘의 복잡성에 대한 지식 소개

이 기사는 Python의 시퀀스 테이블 알고리즘의 복잡성에 대한 관련 지식을 제공합니다. 이는 특정 참조 가치가 있으므로 도움이 될 수 있습니다.

1. 알고리즘 복잡도 소개

알고리즘의 시간적, 공간적 특성에서 가장 중요한 것은 크기와 추세이므로 복잡도를 측정하는 함수 상수 인자는 무시할 수 있습니다.

Big O 표기법 일반적으로 특정 알고리즘의 점근적 시간 복잡도를 사용합니다. 일반적으로 사용되는 점근적 복잡도 함수의 복잡도를 비교하면 다음과 같습니다.

O(1)<O(logn)<O(n)<O(nlogn)<O(n^2)<O(n^3)<O(2^n)<O(n!)<O(n^n)

시간 복잡도를 도입한 예입니다. 두 코드 예를 비교하여 계산 결과를 확인하세요.

import time 
start_time = time.time()
for a in range(0,1001):
    for b in range(0,1001):
        for c in range(0,1001):
            if a+b+c ==1000 and a**2 + b**2 == c**2:
                print("a, b, c :%d, %d, %d" % (a, b ,c))
end_time = time.time()
print("times:%d" % (end_time-start_time))
print("完成")

rreee

시간 복잡도 계산 방법:

import time
start_time = time.time()
for a in range(0,1001):
    for b in range(0,1001):
        c = 1000 - a - b
        if a**2 + b**2 == c**2:
            print("a, b, c :%d, %d, %d" % (a, b ,c))
end_time = time.time()
print("times:%d" % (end_time-start_time))
print("完成")

2. 순차 목록의 시간 복잡도

목록의 시간 복잡도 테스트

# 时间复杂度计算
# 1.基本步骤,基本操作,复杂度是O(1)
# 2.顺序结构,按加法计算
# 3.循环,按照乘法
# 4.分支结构采用其中最大值
# 5.计算复杂度,只看最高次项,例如n^2+2的复杂度是O(n^2)

출력 결과

목록에 있는 메서드의 복잡성:

rreee

사전에 있는 메서드의 복잡성(보충)

# 测试
from timeit import Timer

def test1():
    list1 = []
    for i in range(10000):
        list1.append(i)
        
def test2():
    list2 = []
    for i in range(10000):
        # list2 += [i] # +=本身有优化,所以不完全等于list = list + [i]
        list2 = list2 + [i]
        
def test3():
    list3 = [i for i in range(10000)]
    
def test4():
    list4 = list(range(10000))
    
def test5():
    list5 = []
    for i in range(10000):
        list5.extend([i])
    
timer1 = Timer("test1()","from __main__ import test1")
print("append:",timer1.timeit(1000))

timer2 = Timer("test2()","from __main__ import test2")
print("+:",timer2.timeit(1000))

timer3 = Timer("test3()","from __main__ import test3")
print("[i for i in range]:",timer3.timeit(1000))

timer4 = Timer("test4()","from __main__ import test4")
print("list(range):",timer4.timeit(1000))

timer5 = Timer("test5()","from __main__ import test5")
print("extend:",timer5.timeit(1000))

3. 시퀀스 테이블의 데이터 구조

  1. 시퀀스 테이블의 전체 정보는 두 부분으로 구성됩니다. 한 부분은 테이블의 요소 집합이고 다른 부분은 올바른 결과를 얻기 위해 기록해야 하는 정보입니다. 이 부분의 정보에는 주로 요소 저장이 포함됩니다. 영역의 용량과 현재 테이블의 요소 수라는 두 가지 항목이 있습니다.

  2. 헤더와 데이터 영역의 결합: 통합 구조: 헤더 정보(기록 용량 및 기존 요소 수)와 지속적인 저장을 위한 데이터 영역

  3. 분리 구조: 헤더 정보 데이터 영역과 데이터 영역은 연속적으로 저장되지는 ​​않습니다. 실제 데이터 영역을 가리키도록 주소 단위를 저장하는 데 사용되는 정보가 있습니다.

  4. 둘 사이의 차이점과 장단점:

# 列表方法中复杂度
# index    O(1)
# append    0(1)
# pop    O(1) 无参数表示是从尾部向外取数
# pop(i)    O(n) 从指定位置取,也就是考虑其最复杂的状况是从头开始取,n为列表的长度
# del    O(n) 是一个个删除
# iteration O(n)
# contain O(n) 其实就是in,也就是说需要遍历一遍
# get slice[x:y] O(K)   取切片,即K为Y-X
# del slice O(n) 删除切片
# set slice O(n) 设置切片
# reverse O(n) 逆置
# concatenate O(k) 将两个列表加到一起,K为第二个列表的长度
# sort O(nlogn) 排序,和排序算法有关
# multiply O(nk) K为列表的长度
# 字典中的复杂度
# copy O(n)
# get item O(1)
# set item O(1) 设置
# delete item O(1)
# contains(in) O(1) 字典不用遍历,所以可以一次找到
# iteration O(n)

4. Python의 가변 공간 확장 전략

1. 빈 테이블(또는 작은 테이블)을 생성할 때 시스템은 8개의 요소를 수용할 수 있는 저장 영역을 할당합니다.
2. 삽입 작업(삽입, 추가)을 수행할 때 해당 영역이 저장될 때 3. 이때 테이블이 이미 매우 큰 경우(임계값은 50,000) 정책을 변경하고 두 배로 늘리는 방법을 채택합니다. 너무 많은 여유 공간을 피하기 위해.

위 내용은 Python의 순차 목록 알고리즘의 복잡성에 대한 지식 소개의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

성명
이 기사는 CSDN에서 복제됩니다. 침해가 있는 경우 admin@php.cn으로 문의하시기 바랍니다. 삭제
파이썬 어레이에서 수행 할 수있는 일반적인 작업은 무엇입니까?파이썬 어레이에서 수행 할 수있는 일반적인 작업은 무엇입니까?Apr 26, 2025 am 12:22 AM

PythonArraysSupportVariousOperations : 1) SlicingExtractsSubsets, 2) 추가/확장 어드먼트, 3) 삽입 값 삽입 ATSpecificPositions, 4) retingdeletesElements, 5) 분류/ReversingChangesOrder 및 6) ListsompectionScreateNewListSbasedOnsistin

어떤 유형의 응용 프로그램에서 Numpy Array가 일반적으로 사용됩니까?어떤 유형의 응용 프로그램에서 Numpy Array가 일반적으로 사용됩니까?Apr 26, 2025 am 12:13 AM

NumpyArraysareSentialplosplicationSefficationSefficientNumericalcomputationsanddatamanipulation. Theyarcrucialindatascience, MachineLearning, Physics, Engineering 및 Financeduetotheiribility에 대한 handlarge-scaledataefficivally. forexample, Infinancialanyaly

파이썬의 목록 위의 배열을 언제 사용 하시겠습니까?파이썬의 목록 위의 배열을 언제 사용 하시겠습니까?Apr 26, 2025 am 12:12 AM

UseanArray.ArrayOveralistInpyThonWhendealingwithhomogeneousData, Performance-CriticalCode, OrinterFacingwithCcode.1) HomogeneousData : ArraysSaveMemorywithtypepletement.2) Performance-CriticalCode : arraysofferbetterporcomanceFornumericalOperations.3) Interf

모든 목록 작업은 배열에 의해 지원됩니까? 왜 또는 왜 그렇지 않습니까?모든 목록 작업은 배열에 의해 지원됩니까? 왜 또는 왜 그렇지 않습니까?Apr 26, 2025 am 12:05 AM

아니요, NOTALLLISTOPERATIONARESUPPORTEDBYARRARES, andVICEVERSA.1) ArraySDONOTSUPPORTDYNAMICOPERATIONSLIKEPENDORINSERTWITHUTRESIGING, WHITHIMPACTSPERFORMANCE.2) ListSDONOTEECONSTANTTIMECOMPLEXITEFORDITITICCESSLIKEARRAYSDO.

파이썬 목록에서 요소에 어떻게 액세스합니까?파이썬 목록에서 요소에 어떻게 액세스합니까?Apr 26, 2025 am 12:03 AM

ToaccesselementsInapyThonlist, 사용 인덱싱, 부정적인 인덱싱, 슬라이스, 오리 화.

어레이는 파이썬으로 과학 컴퓨팅에 어떻게 사용됩니까?어레이는 파이썬으로 과학 컴퓨팅에 어떻게 사용됩니까?Apr 25, 2025 am 12:28 AM

Arraysinpython, 특히 비밀 복구를위한 ArecrucialInscientificcomputing.1) theaRearedFornumericalOperations, DataAnalysis 및 MachinELearning.2) Numpy'SimplementationIncensuressuressurations thanpythonlists.3) arraysenablequick

같은 시스템에서 다른 파이썬 버전을 어떻게 처리합니까?같은 시스템에서 다른 파이썬 버전을 어떻게 처리합니까?Apr 25, 2025 am 12:24 AM

Pyenv, Venv 및 Anaconda를 사용하여 다양한 Python 버전을 관리 할 수 ​​있습니다. 1) PYENV를 사용하여 여러 Python 버전을 관리합니다. Pyenv를 설치하고 글로벌 및 로컬 버전을 설정하십시오. 2) VENV를 사용하여 프로젝트 종속성을 분리하기 위해 가상 환경을 만듭니다. 3) Anaconda를 사용하여 데이터 과학 프로젝트에서 Python 버전을 관리하십시오. 4) 시스템 수준의 작업을 위해 시스템 파이썬을 유지하십시오. 이러한 도구와 전략을 통해 다양한 버전의 Python을 효과적으로 관리하여 프로젝트의 원활한 실행을 보장 할 수 있습니다.

표준 파이썬 어레이를 통해 Numpy Array를 사용하면 몇 가지 장점은 무엇입니까?표준 파이썬 어레이를 통해 Numpy Array를 사용하면 몇 가지 장점은 무엇입니까?Apr 25, 2025 am 12:21 AM

Numpyarrayshaveseveraladvantagesstandardpythonarrays : 1) thearemuchfasterduetoc 기반 간증, 2) thearemorememory-refficient, 특히 withlargedatasets 및 3) wepferoptizedformationsformationstaticaloperations, 만들기, 만들기

See all articles

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

Video Face Swap

Video Face Swap

완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

뜨거운 도구

DVWA

DVWA

DVWA(Damn Vulnerable Web App)는 매우 취약한 PHP/MySQL 웹 애플리케이션입니다. 주요 목표는 보안 전문가가 법적 환경에서 자신의 기술과 도구를 테스트하고, 웹 개발자가 웹 응용 프로그램 보안 프로세스를 더 잘 이해할 수 있도록 돕고, 교사/학생이 교실 환경 웹 응용 프로그램에서 가르치고 배울 수 있도록 돕는 것입니다. 보안. DVWA의 목표는 다양한 난이도의 간단하고 간단한 인터페이스를 통해 가장 일반적인 웹 취약점 중 일부를 연습하는 것입니다. 이 소프트웨어는

WebStorm Mac 버전

WebStorm Mac 버전

유용한 JavaScript 개발 도구

Atom Editor Mac 버전 다운로드

Atom Editor Mac 버전 다운로드

가장 인기 있는 오픈 소스 편집기

에디트플러스 중국어 크랙 버전

에디트플러스 중국어 크랙 버전

작은 크기, 구문 강조, 코드 프롬프트 기능을 지원하지 않음

MinGW - Windows용 미니멀리스트 GNU

MinGW - Windows용 미니멀리스트 GNU

이 프로젝트는 osdn.net/projects/mingw로 마이그레이션되는 중입니다. 계속해서 그곳에서 우리를 팔로우할 수 있습니다. MinGW: GCC(GNU Compiler Collection)의 기본 Windows 포트로, 기본 Windows 애플리케이션을 구축하기 위한 무료 배포 가능 가져오기 라이브러리 및 헤더 파일로 C99 기능을 지원하는 MSVC 런타임에 대한 확장이 포함되어 있습니다. 모든 MinGW 소프트웨어는 64비트 Windows 플랫폼에서 실행될 수 있습니다.