여기에서는 Javascript의 비동기 프로그래밍 기술에 대한 심층적인 논의가 있습니다. (P.S. 글이 길어요. 멜론씨앗과 콜라를 준비해주세요 :D)
1. 자바스크립트 비동기 프로그래밍 입문
적어도 언어 수준에서는 자바스크립트가 싱글스레드이기 때문에 비동기 프로그래밍은 특히 중요합니다. 그것.
nodejs를 예로 들면, 쉘은 사용자 작업 수준인 js 언어 계층입니다. 이 수준에서는 단일 스레드에서 실행되므로 다음과 같은 언어 수준에서는 멀티스레딩을 사용할 수 없습니다. Java 및 Python과 같은 언어 능력. 대신 nodejs 프로그래밍은 동기화 차단을 유발하지 않고 하드웨어를 효율적으로 사용하기 위해 비동기 프로그래밍 기술을 광범위하게 사용합니다. 그러나 nodejs의 기본 구현은 실제로 멀티스레딩 기술을 사용하지만 이 계층은 사용자에게 투명합니다. nodejs는 멀티스레드 프로그래밍에서 발생하는 잠금이나 기타 문제에 대해 걱정할 필요가 없습니다. 문제는 비동기 코드를 작성하는 것입니다.
2. Javascript 비동기 프로그래밍 방법
ES 6 이전:
* 콜백 함수
* 이벤트 수신(이벤트 게시/구독)
* Promise 객체
ES 6:
* 생성기 함수(코루틴)
ES 7:
* async 및 wait
PS: 다음 예제를 실행하려면 node v0.11 이상을 설치하고 node [file name.js]를 사용하여 명령줄에서 실행하세요. 일부 코드 특수 옵션을 활성화해야 하며 이에 대한 자세한 내용은 구체적인 예에서 설명합니다.
1. 콜백 함수
콜백 함수는 일반적으로 시간이 많이 걸리는 작업 후에 작업을 수행해야 할 때 사용할 수 있습니다.
example 1:
//一个定时器function timer(time, callback){ setTimeout(function(){ callback(); }, time); } timer(3000, function(){ console.log(123); })
example 2:
//读文件后输出文件内容var fs = require('fs'); fs.readFile('./text1.txt', 'utf8', function(err, data){ if (err){ throw err; } console.log(data); });
example 3:
1 //嵌套回调,读一个文件后输出,再读另一个文件,注意文件是有序被输出的,先text1.txt后text2.txt2 var fs = require('fs');3 4 fs.readFile('./text1.txt', 'utf8', function(err, data){5 console.log("text1 file content: " + data);6 fs.readFile('./text2.txt', 'utf8', function(err, data){7 console.log("text2 file content: " + data);8 });9 });
1 //callback hell 2 3 doSomethingAsync1(function(){ 4 doSomethingAsync2(function(){ 5 doSomethingAsync3(function(){ 6 doSomethingAsync4(function(){ 7 doSomethingAsync5(function(){ 8 // code... 9 });10 });11 });12 });13 });
콜백 계층 구조의 복잡성을 측정하는 방법은 doSomethingAsync2가 doSomethingAsync1보다 먼저 발생한다고 가정할 때 예제 4에서 얼마나 많은 리팩토링 고통을 견뎌야 하는지입니다.
콜백 함수의 또 다른 문제는 콜백 함수 외부의 콜백 함수에서 예외를 잡을 수 없다는 것입니다. 우리는 예외를 처리할 때 이렇게 했습니다:
예제 5:
1 try{2 //do something may cause exception..3 }4 catch(e){5 //handle exception...6 }
예제 6:
1 var fs = require('fs'); 2 3 try{ 4 fs.readFile('not_exist_file', 'utf8', function(err, data){ 5 console.log(data); 6 }); 7 } 8 catch(e){ 9 console.log("error caught: " + e);10 }
팁: 비동기 코드 콜백 함수의 예외가 가장 바깥쪽의 try/catch 문에서 포착될 수 없는 이유는 무엇입니까?
비동기 호출은 일반적으로 요청 제출과 결과 처리의 두 단계로 나누어집니다. 루프 호출 단계에서는 두 개의 서로 다른 이벤트 루프(틱)에 속하며 서로 관련이 없습니다.
비동기 호출은 일반적으로 비동기 작업이 완료된 후 수행할 작업을 지정하기 위해 콜백을 전달합니다. 비동기 호출 본문과 콜백은 서로 다른 이벤트 루프에 속합니다.
try/catch 문은 현재 이벤트 루프의 예외만 캡처할 수 있으며 콜백에 대해서는 아무 작업도 수행할 수 없습니다.
즉, 비동기 호출 함수에서 비동기 I/O 요청을 던지면 비동기 호출 함수가 즉시 반환됩니다. 이때 비동기 호출 함수는 비동기 I/O 요청과 관련이 없습니다.
2. 이벤트 수신(이벤트 게시/구독)
이벤트 수신은 매우 일반적인 비동기 프로그래밍 패턴이며 코드 분리에 매우 유용합니다. 일반적으로 어떤 부분이 상수이고 어떤 부분이 변경하기 쉬운지 고려해야 합니다. 외부 호출을 위해 상수 부분을 구성 요소 내부에 캡슐화하고 외부 처리를 위해 사용자 정의해야 하는 부분을 노출합니다. 어떤 의미에서 이벤트 디자인은 구성 요소의 인터페이스 디자인입니다.
예 7:
1 //发布和订阅事件 2 3 var events = require('events'); 4 var emitter = new events.EventEmitter(); 5 6 emitter.on('event1', function(message){ 7 console.log(message); 8 }); 9 10 emitter.emit('event1', "message for you");
3.Promise对象
ES 6中原生提供了Promise对象,Promise对象代表了某个未来才会知道结果的事件(一般是一个异步操作),并且这个事件对外提供了统一的API,可供进一步处理。
使用Promise对象可以用同步操作的流程写法来表达异步操作,避免了层层嵌套的异步回调,代码也更加清晰易懂,方便维护。
Promise.prototype.then()
Promise.prototype.then()方法返回的是一个新的Promise对象,因此可以采用链式写法,即一个then后面再调用另一个then。如果前一个回调函数返回的是一个Promise对象,此时后一个回调函数会等待第一个Promise对象有了结果,才会进一步调用。
example 8:
1 //ES 6原生Promise示例 2 var fs = require('fs') 3 4 var read = function (filename){ 5 var promise = new Promise(function(resolve, reject){ 6 fs.readFile(filename, 'utf8', function(err, data){ 7 if (err){ 8 reject(err); 9 }10 resolve(data);11 })12 });13 return promise;14 }15 16 read('./text1.txt')17 .then(function(data){18 console.log(data);19 }, function(err){20 console.log("err: " + err);21 });
上面这个例子,Promise构造函数的参数是一个函数,在这个函数中我们写异步操作的代码,在异步操作的回调中,我们根据err变量来选择是执行resolve方法还是reject方法,一般来说调用resolve方法的参数是异步操作获取到的数据(如果有的话),但还可能是另一个Promise对象,表示异步操作的结果有可能是一个值,也有可能是另一个异步操作,调用reject方法的参数是异步回调用的err参数。
调用read函数时,实际上返回的是一个Promise对象,通过在这个Promise对象上调用then方法并传入resolve方法和reject方法来指定异步操作成功和失败后的操作。
example 9:
1 //原生Primose顺序嵌套回调示例 2 var fs = require('fs') 3 4 var read = function (filename){ 5 var promise = new Promise(function(resolve, reject){ 6 fs.readFile(filename, 'utf8', function(err, data){ 7 if (err){ 8 reject(err); 9 }10 resolve(data);11 })12 });13 return promise;14 }15 16 read('./text1.txt')17 .then(function(data){18 console.log(data);19 return read('./text2.txt');20 })21 .then(function(data){22 console.log(data);23 });
异常处理
Promise.prototype.catch()
Promise.prototype.catch方法是Promise.prototype.then(null, rejection)的别名,用于指定发生错误时的回调函数。
example 9:
1 var fs = require('fs') 2 3 var read = function (filename){ 4 var promise = new Promise(function(resolve, reject){ 5 fs.readFile(filename, 'utf8', function(err, data){ 6 if (err){ 7 reject(err); 8 } 9 resolve(data);10 })11 });12 return promise;13 }14 15 read('./text1.txt')16 .then(function(data){17 console.log(data);18 return read('not_exist_file');19 })20 .then(function(data){21 console.log(data);22 })23 .catch(function(err){24 console.log("error caught: " + err);25 })26 .then(function(data){27 console.log("completed");28 })
如果在catch方法中发生了异常:
example 10:
1 var fs = require('fs') 2 3 var read = function (filename){ 4 var promise = new Promise(function(resolve, reject){ 5 fs.readFile(filename, 'utf8', function(err, data){ 6 if (err){ 7 reject(err); 8 } 9 resolve(data);10 })11 });12 return promise;13 }14 15 read('./text1.txt')16 .then(function(data){17 console.log(data);18 return read('not_exist_file');19 })20 .then(function(data){21 console.log(data);22 })23 .catch(function(err){24 console.log("error caught: " + err);25 x+1;26 })27 .then(function(data){28 console.log("completed");29 })
我们可以在catch方法后再加catch方法来捕获这个x+1的异常:
example 11:
1 var fs = require('fs') 2 3 var read = function (filename){ 4 var promise = new Promise(function(resolve, reject){ 5 fs.readFile(filename, 'utf8', function(err, data){ 6 if (err){ 7 reject(err); 8 } 9 resolve(data);10 })11 });12 return promise;13 }14 15 read('./text1.txt')16 .then(function(data){17 console.log(data);18 return read('not_exist_file');19 })20 .then(function(data){21 console.log(data);22 })23 .catch(function(err){24 console.log("error caught: " + err);25 x+1;26 })27 .catch(function(err){28 console.log("error caught: " + err);29 })30 .then(function(data){31 console.log("completed");32 })
如果几个异步调用有关联,但它们不是顺序式的,是可以同时进行的,我们很直观地会希望它们能够并发执行(这里要注意区分“并发”和“并行”的概念,不要搞混)。
Promise.all()
Promise.all方法用于将多个Promise实例,包装成一个新的Promise实例。
var p = Promise.all([p1,p2,p3]);
Promise.all方法接受一个数组作为参数,p1、p2、p3都是Promise对象实例。
p的状态由p1、p2、p3决定,分两种情况:
(1)只有p1、p2、p3的状态都变成fulfilled,p的状态才会变成fulfilled,此时p1、p2、p3的返回值组成一个数组,传递给p的回调函数。
(2)只要p1、p2、p3之中有一个被rejected,p的状态就变成rejected,此时第一个被reject的实例的返回值,会传递给p的回调函数。
一个具体的例子:
example 12:
1 var fs = require('fs') 2 3 var read = function (filename){ 4 var promise = new Promise(function(resolve, reject){ 5 fs.readFile(filename, 'utf8', function(err, data){ 6 if (err){ 7 reject(err); 8 } 9 resolve(data);10 })11 });12 return promise;13 }14 15 var promises = [1, 2].map(function(fileno){16 return read('./text' + fileno + '.txt');17 });18 19 Promise.all(promises)20 .then(function(contents){21 console.log(contents);22 })23 .catch(function(err){24 console.log("error caught: " + err);25 })
Promise.race()
Promise.race()也是将多个Promise实例包装成一个新的Promise实例:
var p = Promise.race([p1,p2,p3]);
上述代码中,p1、p2、p3只要有一个实例率先改变状态,p的状态就会跟着改变,那个率先改变的Promise实例的返回值,就传递给p的返回值。如果Promise.all方法和Promise.race方法的参数不是Promise实例,就会先调用下面讲到的Promise.resolve方法,将参数转为Promise实例,再进一步处理。
example 13:
1 var http = require('http'); 2 var qs = require('querystring'); 3 4 var requester = function(options, postData){ 5 var promise = new Promise(function(resolve, reject){ 6 var content = ""; 7 var req = http.request(options, function (res) { 8 res.setEncoding('utf8'); 9 10 res.on('data', function (data) {11 onData(data);12 });13 14 res.on('end', function () {15 resolve(content);16 });17 18 function onData(data){19 content += data;20 }21 });22 23 req.on('error', function(err) {24 reject(err);25 });26 27 req.write(postData);28 req.end();29 });30 31 return promise;32 }33 34 var promises = ["柠檬", "苹果"].map(function(keyword){35 var options = {36 hostname: 'localhost', 37 port: 9200, 38 path: '/meiqu/tips/_search',39 method: 'POST' 40 };41 42 var data = {43 'query' : {44 'match' : {45 'summary' : keyword46 }47 }48 };49 data = JSON.stringify(data);50 return requester(options, data);51 });52 53 Promise.race(promises)54 .then(function(contents) {55 var obj = JSON.parse(contents);56 console.log(obj.hits.hits[0]._source.summary);57 })58 .catch(function(err){59 console.log(err); 60 });
有时候需将现有对象转换成Promise对象,可以使用Promise.resolve()。
如果Promise.resolve方法的参数,不是具有then方法的对象(又称thenable对象),则返回一个新的Promise对象,且它的状态为fulfilled。
如果Promise.resolve方法的参数是一个Promise对象的实例,则会被原封不动地返回。
example 14:
1 var p = Promise.resolve('Hello');2 3 p.then(function (s){4 console.log(s)5 });
Promise.reject()
Promise.reject(reason)方法也会返回一个新的Promise实例,该实例的状态为rejected。Promise.reject方法的参数reason,会被传递给实例的回调函数。
example 15:
1 var p = Promise.reject('出错了');2 3 p.then(null, function (s){4 console.log(s)5 });
上面代码生成一个Promise对象的实例p,状态为rejected,回调函数会立即执行。
3.Generator函数
Generator函数是协程在ES 6中的实现,最大特点就是可以交出函数的执行权(暂停执行)。
注意:在node中需要开启–harmony选项来启用Generator函数。
整个Generator函数就是一个封装的异步任务,或者说是异步任务的容器。异步操作需要暂停的地方,都用yield语句注明。
协程的运行方式如下:
第一步:协程A开始运行。
第二步:协程A执行到一半,暂停,执行权转移到协程B。
第三步:一段时间后,协程B交还执行权。
第四步:协程A恢复执行。
上面的协程A就是异步任务,因为分为两步执行。
比如一个读取文件的例子:
example 16:
1 function asnycJob() {2 // ...其他代码3 var f = yield readFile(fileA);4 // ...其他代码5 }
asnycJob函数是一个协程,yield语句表示,执行到此处执行权就交给其他协程,也就是说,yield是两个阶段的分界线。协程遇到yield语句就暂停执行,直到执行权返回,再从暂停处继续执行。这种写法的优点是,可以把异步代码写得像同步一样。
看一个简单的Generator函数例子:
example 17:
1 function* gen(x){ 2 var y = yield x + 2; 3 return y; 4 } 5 6 var g = gen(1); 7 var r1 = g.next(); // { value: 3, done: false } 8 console.log(r1); 9 var r2 = g.next() // { value: undefined, done: true }10 console.log(r2);
上述代码中,调用Generator函数,会返回一个内部指针(即遍历器)g,这是Generator函数和一般函数不同的地方,调用它不会返回结果,而是一个指针对象。调用指针g的next方法,会移动内部指针,指向第一个遇到的yield语句,上例就是执行到x+2为止。
换言之,next方法的作用是分阶段执行Generator函数。每次调用next方法,会返回一个对象,表示当前阶段的信息(value属性和done属性)。value属性是yield语句后面表达式的值,表示当前阶段的值;done属性是一个布尔值,表示Generator函数是否执行完毕,即是否还有下一个阶段。
Generator函数的数据交换和错误处理
next方法返回值的value属性,是Generator函数向外输出数据;next方法还可以接受参数,这是向Generator函数体内输入数据。
example 18:
1 function* gen(x){ 2 var y = yield x + 2; 3 return y; 4 } 5 6 var g = gen(1); 7 var r1 = g.next(); // { value: 3, done: false } 8 console.log(r1); 9 var r2 = g.next(2) // { value: 2, done: true }10 console.log(r2);
Generator函数内部还可以部署错误处理代码,捕获函数体外抛出的错误。
example 19:
1 function* gen(x){ 2 try { 3 var y = yield x + 2; 4 } 5 catch (e){ 6 console.log(e); 7 } 8 return y; 9 }10 11 var g = gen(1);12 g.next();13 g.throw('error!'); //error!
example 20:
1 var fs = require('fs'); 2 var thunkify = require('thunkify'); 3 var readFile = thunkify(fs.readFile); 4 5 var gen = function* (){ 6 var r1 = yield readFile('./text1.txt', 'utf8'); 7 console.log(r1); 8 var r2 = yield readFile('./text2.txt', 'utf8'); 9 console.log(r2);10 };11 12 //开始执行上面的代码13 var g = gen();14 15 var r1 = g.next();16 r1.value(function(err, data){17 if (err) throw err;18 var r2 = g.next(data);19 r2.value(function(err, data){20 if (err) throw err;21 g.next(data);22 });23 });
在深入讨论Generator函数之前我们先要知道Thunk函数这个概念。
求值策略(即函数的参数到底应该何时求值)
(1) 传值调用
(2) 传名调用
Javascript是传值调用的,Thunk函数是编译器“传名调用”的实现,就是将参数放入一个临时函数中,再将这个临时函数放入函数体,这个临时函数就叫做Thunk函数。
举个栗子就好懂了:
example 21:
1 function f(m){ 2 return m * 2; 3 } 4 var x = 1; 5 f(x + 5); 6 7 //等同于 8 var thunk = function (x) { 9 return x + 5;10 };11 12 function f(thunk){13 return thunk() * 2;14 }
JavaScript语言的Thunk函数
在JavaScript语言中,Thunk函数替换的不是表达式,而是多参数函数,将其替换成单参数的版本,且只接受回调函数作为参数。
example 22:
1 var fs = require('fs'); 2 3 // 正常版本的readFile(多参数版本) 4 fs.readFile(fileName, callback); 5 6 // Thunk版本的readFile(单参数版本) 7 var readFileThunk = Thunk(fileName); 8 readFileThunk(callback); 9 10 var Thunk = function (fileName){11 return function (callback){12 return fs.readFile(fileName, callback);13 };14 };
example 23:
1 var Thunk = function(fn){2 return function (){3 var args = Array.prototype.slice.call(arguments);4 return function (callback){5 args.push(callback);6 return fn.apply(this, args);7 }8 };9 };
使用上面的转换器,生成fs.readFile的Thunk函数。
example 24:
1 var readFileThunk = Thunk(fs.readFile);2 readFileThunk('./text1.txt', 'utf8')(function(err, data){3 console.log(data);4 });
可以使用thunkify模块来Thunk化任何带有callback的函数。
我们需要借助Thunk函数的能力来自动执行Generator函数。
下面是一个基于Thunk函数的Generator函数执行器。
example 25:
1 //Generator函数执行器 2 3 function run(fn) { 4 var gen = fn(); 5 6 function next(err, data) { 7 var result = gen.next(data); 8 if (result.done) return; 9 result.value(next);10 }11 12 next();13 }14 15 run(gen);
example 26:
1 var fs = require('fs'); 2 var thunkify = require('thunkify'); 3 var readFile = thunkify(fs.readFile); 4 5 var gen = function* (){ 6 var f1 = yield readFile('./text1.txt', 'utf8'); 7 console.log(f1); 8 var f2 = yield readFile('./text2.txt', 'utf8'); 9 console.log(f2);10 var f3 = yield readFile('./text3.txt', 'utf8');11 console.log(f3);12 };13 14 function run(fn) {15 var gen = fn();16 17 function next(err, data) {18 var result = gen.next(data);19 if (result.done) return;20 result.value(next);21 }22 23 next();24 }25 26 run(gen); //自动执行
yield *语句
普通的yield语句后面跟一个异步操作,yield *语句后面需要跟一个遍历器,可以理解为yield *后面要跟另一个Generator函数,讲起来比较抽象,看一个实例。
example 27:
1 //嵌套异步操作流 2 var fs = require('fs'); 3 var thunkify = require('thunkify'); 4 var readFile = thunkify(fs.readFile); 5 6 var gen = function* (){ 7 var f1 = yield readFile('./text1.txt', 'utf8'); 8 console.log(f1); 9 10 var f_ = yield * gen1(); //此处插入了另外一个异步流程11 12 var f2 = yield readFile('./text2.txt', 'utf8');13 console.log(f2);14 15 var f3 = yield readFile('./text3.txt', 'utf8');16 console.log(f3);17 };18 19 var gen1 = function* (){20 var f4 = yield readFile('./text4.txt', 'utf8');21 console.log(f4);22 var f5 = yield readFile('./text5.txt', 'utf8');23 console.log(f5);24 }25 26 function run(fn) {27 var gen = fn();28 29 function next(err, data) {30 var result = gen.next(data);31 if (result.done) return;32 result.value(next);33 }34 35 next();36 }37 38 run(gen); //自动执行
1
4
5
2
3
也就是说,使用yield *可以在一个异步操作流程中直接插入另一个异步操作流程,我们可以据此构造可嵌套的异步操作流,更为重要的是,写这些代码完全是同步风格的。
目前业界比较流行的Generator函数自动执行的解决方案是co库,此处也只给出co的例子。顺带一提node-fibers也是一种解决方案。
顺序执行3个异步读取文件的操作,并依次输出文件内容:
example 28:
1 var fs = require('fs'); 2 var co = require('co'); 3 var thunkify = require('thunkify'); 4 var readFile = thunkify(fs.readFile); 5 6 co(function*(){ 7 var files=[ 8 './text1.txt', 9 './text2.txt',10 './text3.txt'11 ];12 13 var p1 = yield readFile(files[0]);14 console.log(files[0] + ' ->' + p1);15 16 var p2 = yield readFile(files[1]);17 console.log(files[1] + ' ->' + p2);18 19 var p3 = yield readFile(files[2]);20 console.log(files[2] + ' ->' + p3);21 22 return 'done';23 });
example 29:
1 var fs = require('fs'); 2 var co = require('co'); 3 var thunkify = require('thunkify'); 4 var readFile = thunkify(fs.readFile); 5 6 co(function* () { 7 var files = ['./text1.txt', './text2.txt', './text3.txt']; 8 var contents = yield files.map(readFileAsync); 9 10 console.log(contents);11 });12 13 function readFileAsync(filename) {14 return readFile(filename, 'utf8');15 }
ES 7中的async和await
async和await是ES 7中的新语法,新到连ES 6都不支持,但是可以通过Babel一类的预编译器处理成ES 5的代码。目前比较一致的看法是async和await是js对异步的终极解决方案。
async函数实际上是Generator函数的语法糖(js最喜欢搞语法糖,包括ES 6中新增的“类”支持其实也是语法糖)。
配置Babel可以看:配置Babel
如果想尝个鲜,简单一点做法是执行:
1 sudo npm install --global babel-cli
async_await.js代码如下:
1 var fs = require('fs'); 2 3 var readFile = function (fileName){ 4 return new Promise(function (resolve, reject){ 5 fs.readFile(fileName, function(error, data){ 6 if (error){ 7 reject(error); 8 } 9 else {10 resolve(data);11 }12 });13 });14 };15 16 var asyncReadFile = async function (){17 var f1 = await readFile('./text1.txt');18 var f2 = await readFile('./text2.txt');19 console.log(f1.toString());20 console.log(f2.toString());21 };22 23 asyncReadFile();
输出:
1
2
相关文章:
深入理解JavaScript编程中的同步与异步机制_基础知识
위 내용은 Javascript 비동기 프로그래밍 지식 포인트에 대한 체계적인 설명의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

웹 개발에서 JavaScript의 주요 용도에는 클라이언트 상호 작용, 양식 검증 및 비동기 통신이 포함됩니다. 1) DOM 운영을 통한 동적 컨텐츠 업데이트 및 사용자 상호 작용; 2) 사용자가 사용자 경험을 향상시키기 위해 데이터를 제출하기 전에 클라이언트 확인이 수행됩니다. 3) 서버와의 진실한 통신은 Ajax 기술을 통해 달성됩니다.

보다 효율적인 코드를 작성하고 성능 병목 현상 및 최적화 전략을 이해하는 데 도움이되기 때문에 JavaScript 엔진이 내부적으로 작동하는 방식을 이해하는 것은 개발자에게 중요합니다. 1) 엔진의 워크 플로에는 구문 분석, 컴파일 및 실행; 2) 실행 프로세스 중에 엔진은 인라인 캐시 및 숨겨진 클래스와 같은 동적 최적화를 수행합니다. 3) 모범 사례에는 글로벌 변수를 피하고 루프 최적화, Const 및 Lets 사용 및 과도한 폐쇄 사용을 피하는 것이 포함됩니다.

Python은 부드러운 학습 곡선과 간결한 구문으로 초보자에게 더 적합합니다. JavaScript는 가파른 학습 곡선과 유연한 구문으로 프론트 엔드 개발에 적합합니다. 1. Python Syntax는 직관적이며 데이터 과학 및 백엔드 개발에 적합합니다. 2. JavaScript는 유연하며 프론트 엔드 및 서버 측 프로그래밍에서 널리 사용됩니다.

Python과 JavaScript는 커뮤니티, 라이브러리 및 리소스 측면에서 고유 한 장점과 단점이 있습니다. 1) Python 커뮤니티는 친절하고 초보자에게 적합하지만 프론트 엔드 개발 리소스는 JavaScript만큼 풍부하지 않습니다. 2) Python은 데이터 과학 및 기계 학습 라이브러리에서 강력하며 JavaScript는 프론트 엔드 개발 라이브러리 및 프레임 워크에서 더 좋습니다. 3) 둘 다 풍부한 학습 리소스를 가지고 있지만 Python은 공식 문서로 시작하는 데 적합하지만 JavaScript는 MDNWebDocs에서 더 좋습니다. 선택은 프로젝트 요구와 개인적인 이익을 기반으로해야합니다.

C/C에서 JavaScript로 전환하려면 동적 타이핑, 쓰레기 수집 및 비동기 프로그래밍으로 적응해야합니다. 1) C/C는 수동 메모리 관리가 필요한 정적으로 입력 한 언어이며 JavaScript는 동적으로 입력하고 쓰레기 수집이 자동으로 처리됩니다. 2) C/C를 기계 코드로 컴파일 해야하는 반면 JavaScript는 해석 된 언어입니다. 3) JavaScript는 폐쇄, 프로토 타입 체인 및 약속과 같은 개념을 소개하여 유연성과 비동기 프로그래밍 기능을 향상시킵니다.

각각의 엔진의 구현 원리 및 최적화 전략이 다르기 때문에 JavaScript 엔진은 JavaScript 코드를 구문 분석하고 실행할 때 다른 영향을 미칩니다. 1. 어휘 분석 : 소스 코드를 어휘 단위로 변환합니다. 2. 문법 분석 : 추상 구문 트리를 생성합니다. 3. 최적화 및 컴파일 : JIT 컴파일러를 통해 기계 코드를 생성합니다. 4. 실행 : 기계 코드를 실행하십시오. V8 엔진은 즉각적인 컴파일 및 숨겨진 클래스를 통해 최적화하여 Spidermonkey는 유형 추론 시스템을 사용하여 동일한 코드에서 성능이 다른 성능을 제공합니다.

실제 세계에서 JavaScript의 응용 프로그램에는 서버 측 프로그래밍, 모바일 애플리케이션 개발 및 사물 인터넷 제어가 포함됩니다. 1. 서버 측 프로그래밍은 Node.js를 통해 실현되며 동시 요청 처리에 적합합니다. 2. 모바일 애플리케이션 개발은 재교육을 통해 수행되며 크로스 플랫폼 배포를 지원합니다. 3. Johnny-Five 라이브러리를 통한 IoT 장치 제어에 사용되며 하드웨어 상호 작용에 적합합니다.

일상적인 기술 도구를 사용하여 기능적 다중 테넌트 SaaS 응용 프로그램 (Edtech 앱)을 구축했으며 동일한 작업을 수행 할 수 있습니다. 먼저, 다중 테넌트 SaaS 응용 프로그램은 무엇입니까? 멀티 테넌트 SAAS 응용 프로그램은 노래에서 여러 고객에게 서비스를 제공 할 수 있습니다.


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

VSCode Windows 64비트 다운로드
Microsoft에서 출시한 강력한 무료 IDE 편집기

맨티스BT
Mantis는 제품 결함 추적을 돕기 위해 설계된 배포하기 쉬운 웹 기반 결함 추적 도구입니다. PHP, MySQL 및 웹 서버가 필요합니다. 데모 및 호스팅 서비스를 확인해 보세요.

ZendStudio 13.5.1 맥
강력한 PHP 통합 개발 환경

Dreamweaver Mac版
시각적 웹 개발 도구

MinGW - Windows용 미니멀리스트 GNU
이 프로젝트는 osdn.net/projects/mingw로 마이그레이션되는 중입니다. 계속해서 그곳에서 우리를 팔로우할 수 있습니다. MinGW: GCC(GNU Compiler Collection)의 기본 Windows 포트로, 기본 Windows 애플리케이션을 구축하기 위한 무료 배포 가능 가져오기 라이브러리 및 헤더 파일로 C99 기능을 지원하는 MSVC 런타임에 대한 확장이 포함되어 있습니다. 모든 MinGW 소프트웨어는 64비트 Windows 플랫폼에서 실행될 수 있습니다.
