찾다
백엔드 개발파이썬 튜토리얼TensorFlow를 사용한 올가미 회귀 및 능선 회귀 알고리즘 구현 예

이 글에서는 TensorFlow를 사용하여 Lasso 회귀 및 능선 회귀 알고리즘을 구현하는 예를 주로 소개합니다. 이제는 필요한 친구들이 참조할 수 있도록 공유합니다.

또한 제한할 수 있는 몇 가지 방법이 있습니다. 회귀 알고리즘의 출력 결과 가장 일반적으로 사용되는 두 가지 정규화 방법은 올가미 회귀와 능선 회귀입니다.

올가미 회귀 및 능선 회귀 알고리즘은 기존 선형 회귀 알고리즘과 매우 유사합니다. 한 가지 차이점은 기울기(또는 순 기울기)를 제한하기 위해 공식에 정규 항이 추가된다는 것입니다. 이렇게 하는 주된 이유는 기울기 A에 따라 달라지는 손실 함수를 추가하여 종속 변수에 대한 특성의 영향을 제한하는 것입니다.

올가미 회귀 알고리즘의 경우 손실 함수에 기울기 A의 주어진 배수 항목을 추가합니다. 우리는 TensorFlow의 논리 연산을 사용하지만 이러한 연산과 관련된 기울기 없이 대신 컷오프 지점에서 점프하고 확장하는 연속 계단 함수라고도 하는 계단 함수의 연속 추정을 사용합니다. 잠시 후 올가미 회귀 알고리즘을 사용하는 방법을 살펴보겠습니다.

능선 회귀 알고리즘의 경우 경사 계수의 L2 정규화인 L2 표준을 추가합니다.

# LASSO and Ridge Regression
# lasso回归和岭回归
# 
# This function shows how to use TensorFlow to solve LASSO or 
# Ridge regression for 
# y = Ax + b
# 
# We will use the iris data, specifically: 
#  y = Sepal Length 
#  x = Petal Width

# import required libraries
import matplotlib.pyplot as plt
import sys
import numpy as np
import tensorflow as tf
from sklearn import datasets
from tensorflow.python.framework import ops


# Specify 'Ridge' or 'LASSO'
regression_type = 'LASSO'

# clear out old graph
ops.reset_default_graph()

# Create graph
sess = tf.Session()

###
# Load iris data
###

# iris.data = [(Sepal Length, Sepal Width, Petal Length, Petal Width)]
iris = datasets.load_iris()
x_vals = np.array([x[3] for x in iris.data])
y_vals = np.array([y[0] for y in iris.data])

###
# Model Parameters
###

# Declare batch size
batch_size = 50

# Initialize placeholders
x_data = tf.placeholder(shape=[None, 1], dtype=tf.float32)
y_target = tf.placeholder(shape=[None, 1], dtype=tf.float32)

# make results reproducible
seed = 13
np.random.seed(seed)
tf.set_random_seed(seed)

# Create variables for linear regression
A = tf.Variable(tf.random_normal(shape=[1,1]))
b = tf.Variable(tf.random_normal(shape=[1,1]))

# Declare model operations
model_output = tf.add(tf.matmul(x_data, A), b)

###
# Loss Functions
###

# Select appropriate loss function based on regression type

if regression_type == 'LASSO':
  # Declare Lasso loss function
  # 增加损失函数,其为改良过的连续阶跃函数,lasso回归的截止点设为0.9。
  # 这意味着限制斜率系数不超过0.9
  # Lasso Loss = L2_Loss + heavyside_step,
  # Where heavyside_step ~ 0 if A < constant, otherwise ~ 99
  lasso_param = tf.constant(0.9)
  heavyside_step = tf.truep(1., tf.add(1., tf.exp(tf.multiply(-50., tf.subtract(A, lasso_param)))))
  regularization_param = tf.multiply(heavyside_step, 99.)
  loss = tf.add(tf.reduce_mean(tf.square(y_target - model_output)), regularization_param)

elif regression_type == &#39;Ridge&#39;:
  # Declare the Ridge loss function
  # Ridge loss = L2_loss + L2 norm of slope
  ridge_param = tf.constant(1.)
  ridge_loss = tf.reduce_mean(tf.square(A))
  loss = tf.expand_dims(tf.add(tf.reduce_mean(tf.square(y_target - model_output)), tf.multiply(ridge_param, ridge_loss)), 0)

else:
  print(&#39;Invalid regression_type parameter value&#39;,file=sys.stderr)


###
# Optimizer
###

# Declare optimizer
my_opt = tf.train.GradientDescentOptimizer(0.001)
train_step = my_opt.minimize(loss)

###
# Run regression
###

# Initialize variables
init = tf.global_variables_initializer()
sess.run(init)

# Training loop
loss_vec = []
for i in range(1500):
  rand_index = np.random.choice(len(x_vals), size=batch_size)
  rand_x = np.transpose([x_vals[rand_index]])
  rand_y = np.transpose([y_vals[rand_index]])
  sess.run(train_step, feed_dict={x_data: rand_x, y_target: rand_y})
  temp_loss = sess.run(loss, feed_dict={x_data: rand_x, y_target: rand_y})
  loss_vec.append(temp_loss[0])
  if (i+1)%300==0:
    print(&#39;Step #&#39; + str(i+1) + &#39; A = &#39; + str(sess.run(A)) + &#39; b = &#39; + str(sess.run(b)))
    print(&#39;Loss = &#39; + str(temp_loss))
    print(&#39;\n&#39;)

###
# Extract regression results
###

# Get the optimal coefficients
[slope] = sess.run(A)
[y_intercept] = sess.run(b)

# Get best fit line
best_fit = []
for i in x_vals:
 best_fit.append(slope*i+y_intercept)


###
# Plot results
###

# Plot regression line against data points
plt.plot(x_vals, y_vals, &#39;o&#39;, label=&#39;Data Points&#39;)
plt.plot(x_vals, best_fit, &#39;r-&#39;, label=&#39;Best fit line&#39;, linewidth=3)
plt.legend(loc=&#39;upper left&#39;)
plt.title(&#39;Sepal Length vs Pedal Width&#39;)
plt.xlabel(&#39;Pedal Width&#39;)
plt.ylabel(&#39;Sepal Length&#39;)
plt.show()

# Plot loss over time
plt.plot(loss_vec, &#39;k-&#39;)
plt.title(regression_type + &#39; Loss per Generation&#39;)
plt.xlabel(&#39;Generation&#39;)
plt.ylabel(&#39;Loss&#39;)
plt.show()

출력 결과:

단계 #300 A = [[ 0.77170753]] b = [[ 1.82499862]]
손실 = [[ 10.26473045]]
단계 #600 A = [[ 0 .7 5908542]] b = [[ 3.2220633]]
손실 = [[ 3.06292033]]
단계 #900 A = [[ 0.74843585]] b = [[ 3.9975822]]
손실 = [[ 1.23220456]]
단계 #1200 A = [[ 0.73 7 52165] ] b = [[ 4.42974091]]
손실 = [[ 0.57872057]]
단계 #1500 A = [[ 0.72942668]] b = [[ 4.67253113]]
손실 = [[ 0.40874988]]


라쏘 회귀 알고리즘은 표준 선형 회귀 추정을 기반으로 연속 계단 함수를 추가하여 구현됩니다. 스텝 함수의 기울기로 인해 스텝 크기에 주의해야 합니다. 스텝 크기가 너무 크면 결국 수렴되지 않는 결과를 낳기 때문입니다.

관련 권장 사항:

TensorFlow

을 사용하여 Deming 회귀 알고리즘을 구현하는 예

위 내용은 TensorFlow를 사용한 올가미 회귀 및 능선 회귀 알고리즘 구현 예의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.
Python vs. C : 응용 및 사용 사례가 비교되었습니다Python vs. C : 응용 및 사용 사례가 비교되었습니다Apr 12, 2025 am 12:01 AM

Python은 데이터 과학, 웹 개발 및 자동화 작업에 적합한 반면 C는 시스템 프로그래밍, 게임 개발 및 임베디드 시스템에 적합합니다. Python은 단순성과 강력한 생태계로 유명하며 C는 고성능 및 기본 제어 기능으로 유명합니다.

2 시간의 파이썬 계획 : 현실적인 접근2 시간의 파이썬 계획 : 현실적인 접근Apr 11, 2025 am 12:04 AM

2 시간 이내에 Python의 기본 프로그래밍 개념과 기술을 배울 수 있습니다. 1. 변수 및 데이터 유형을 배우기, 2. 마스터 제어 흐름 (조건부 명세서 및 루프), 3. 기능의 정의 및 사용을 이해하십시오. 4. 간단한 예제 및 코드 스 니펫을 통해 Python 프로그래밍을 신속하게 시작하십시오.

파이썬 : 기본 응용 프로그램 탐색파이썬 : 기본 응용 프로그램 탐색Apr 10, 2025 am 09:41 AM

Python은 웹 개발, 데이터 과학, 기계 학습, 자동화 및 스크립팅 분야에서 널리 사용됩니다. 1) 웹 개발에서 Django 및 Flask 프레임 워크는 개발 프로세스를 단순화합니다. 2) 데이터 과학 및 기계 학습 분야에서 Numpy, Pandas, Scikit-Learn 및 Tensorflow 라이브러리는 강력한 지원을 제공합니다. 3) 자동화 및 스크립팅 측면에서 Python은 자동화 된 테스트 및 시스템 관리와 ​​같은 작업에 적합합니다.

2 시간 안에 얼마나 많은 파이썬을 배울 수 있습니까?2 시간 안에 얼마나 많은 파이썬을 배울 수 있습니까?Apr 09, 2025 pm 04:33 PM

2 시간 이내에 파이썬의 기본 사항을 배울 수 있습니다. 1. 변수 및 데이터 유형을 배우십시오. 이를 통해 간단한 파이썬 프로그램 작성을 시작하는 데 도움이됩니다.

10 시간 이내에 프로젝트 및 문제 중심 방법에서 컴퓨터 초보자 프로그래밍 기본 사항을 가르치는 방법?10 시간 이내에 프로젝트 및 문제 중심 방법에서 컴퓨터 초보자 프로그래밍 기본 사항을 가르치는 방법?Apr 02, 2025 am 07:18 AM

10 시간 이내에 컴퓨터 초보자 프로그래밍 기본 사항을 가르치는 방법은 무엇입니까? 컴퓨터 초보자에게 프로그래밍 지식을 가르치는 데 10 시간 밖에 걸리지 않는다면 무엇을 가르치기로 선택 하시겠습니까?

중간 독서를 위해 Fiddler를 사용할 때 브라우저에서 감지되는 것을 피하는 방법은 무엇입니까?중간 독서를 위해 Fiddler를 사용할 때 브라우저에서 감지되는 것을 피하는 방법은 무엇입니까?Apr 02, 2025 am 07:15 AM

Fiddlerevery Where를 사용할 때 Man-in-the-Middle Reading에 Fiddlereverywhere를 사용할 때 감지되는 방법 ...

Python 3.6에 피클 파일을로드 할 때 '__builtin__'모듈을 찾을 수없는 경우 어떻게해야합니까?Python 3.6에 피클 파일을로드 할 때 '__builtin__'모듈을 찾을 수없는 경우 어떻게해야합니까?Apr 02, 2025 am 07:12 AM

Python 3.6에 피클 파일로드 3.6 환경 보고서 오류 : modulenotfounderror : nomodulename ...

경치 좋은 스팟 코멘트 분석에서 Jieba Word 세분화의 정확성을 향상시키는 방법은 무엇입니까?경치 좋은 스팟 코멘트 분석에서 Jieba Word 세분화의 정확성을 향상시키는 방법은 무엇입니까?Apr 02, 2025 am 07:09 AM

경치 좋은 스팟 댓글 분석에서 Jieba Word 세분화 문제를 해결하는 방법은 무엇입니까? 경치가 좋은 스팟 댓글 및 분석을 수행 할 때 종종 Jieba Word 세분화 도구를 사용하여 텍스트를 처리합니다 ...

See all articles

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

AI Hentai Generator

AI Hentai Generator

AI Hentai를 무료로 생성하십시오.

인기 기사

R.E.P.O. 에너지 결정과 그들이하는 일 (노란색 크리스탈)
3 몇 주 전By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. 최고의 그래픽 설정
3 몇 주 전By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. 아무도들을 수없는 경우 오디오를 수정하는 방법
3 몇 주 전By尊渡假赌尊渡假赌尊渡假赌
WWE 2K25 : Myrise에서 모든 것을 잠금 해제하는 방법
4 몇 주 전By尊渡假赌尊渡假赌尊渡假赌

뜨거운 도구

SublimeText3 Mac 버전

SublimeText3 Mac 버전

신 수준의 코드 편집 소프트웨어(SublimeText3)

메모장++7.3.1

메모장++7.3.1

사용하기 쉬운 무료 코드 편집기

MinGW - Windows용 미니멀리스트 GNU

MinGW - Windows용 미니멀리스트 GNU

이 프로젝트는 osdn.net/projects/mingw로 마이그레이션되는 중입니다. 계속해서 그곳에서 우리를 팔로우할 수 있습니다. MinGW: GCC(GNU Compiler Collection)의 기본 Windows 포트로, 기본 Windows 애플리케이션을 구축하기 위한 무료 배포 가능 가져오기 라이브러리 및 헤더 파일로 C99 기능을 지원하는 MSVC 런타임에 대한 확장이 포함되어 있습니다. 모든 MinGW 소프트웨어는 64비트 Windows 플랫폼에서 실행될 수 있습니다.

에디트플러스 중국어 크랙 버전

에디트플러스 중국어 크랙 버전

작은 크기, 구문 강조, 코드 프롬프트 기능을 지원하지 않음

SublimeText3 Linux 새 버전

SublimeText3 Linux 새 버전

SublimeText3 Linux 최신 버전