이 글에서는 Python 디지털 영상 처리의 뼈대 추출과 유역 알고리즘을 주로 소개하고 참고 자료를 제공합니다. 함께 구경해보세요
뼈대 추출과 유역 알고리즘도 형태학 처리의 범주에 속하며 형태학 서브모듈에 들어있습니다.
1. 뼈대 추출
뼈대 추출, 이진 이미지 희석이라고도 합니다. 이 알고리즘은 특징 추출 및 대상 토폴로지 표현을 위해 연결된 영역을 1픽셀 너비로 세분화할 수 있습니다.
형태학 하위 모듈은 골격 추출을 위한 두 가지 함수, 즉 Skeletonize() 함수와 medial_axis() 함수를 제공합니다. 먼저 Skeletonize() 함수를 살펴보겠습니다.
형식은 skimage.morphology.skeletonize(image)
입력과 출력이 모두 바이너리 이미지입니다.
예제 1:
from skimage import morphology,draw import numpy as np import matplotlib.pyplot as plt #创建一个二值图像用于测试 image = np.zeros((400, 400)) #生成目标对象1(白色U型) image[10:-10, 10:100] = 1 image[-100:-10, 10:-10] = 1 image[10:-10, -100:-10] = 1 #生成目标对象2(X型) rs, cs = draw.line(250, 150, 10, 280) for i in range(10): image[rs + i, cs] = 1 rs, cs = draw.line(10, 150, 250, 280) for i in range(20): image[rs + i, cs] = 1 #生成目标对象3(O型) ir, ic = np.indices(image.shape) circle1 = (ic - 135)**2 + (ir - 150)**2 < 30**2 circle2 = (ic - 135)**2 + (ir - 150)**2 < 20**2 image[circle1] = 1 image[circle2] = 0 #实施骨架算法 skeleton =morphology.skeletonize(image) #显示结果 fig, (ax1, ax2) = plt.subplots(nrows=1, ncols=2, figsize=(8, 4)) ax1.imshow(image, cmap=plt.cm.gray) ax1.axis('off') ax1.set_title('original', fontsize=20) ax2.imshow(skeleton, cmap=plt.cm.gray) ax2.axis('off') ax2.set_title('skeleton', fontsize=20) fig.tight_layout() plt.show()
세 개의 대상 개체가 있는 테스트 이미지를 생성하고 각각 뼈대 추출을 수행합니다. 결과는 다음과 같습니다.
예제 2: 시스템 자체의 말 그림을 사용합니다. 뼈대 추출
from skimage import morphology,data,color import matplotlib.pyplot as plt image=color.rgb2gray(data.horse()) image=1-image #反相 #实施骨架算法 skeleton =morphology.skeletonize(image) #显示结果 fig, (ax1, ax2) = plt.subplots(nrows=1, ncols=2, figsize=(8, 4)) ax1.imshow(image, cmap=plt.cm.gray) ax1.axis('off') ax1.set_title('original', fontsize=20) ax2.imshow(skeleton, cmap=plt.cm.gray) ax2.axis('off') ax2.set_title('skeleton', fontsize=20) fig.tight_layout() plt.show()
medial_axis는 내측 축을 의미하며 전경(1개 값) 대상 개체의 너비를 계산하는 형식은
skimage.morphology.입니다. medial_axis( image,mask=None,return_distance=False)
마스크: 마스크. 기본값은 None입니다. 마스크가 주어지면 스켈레톤 알고리즘은 마스크 내의 픽셀 값에 대해서만 수행됩니다.
return_distance: bool 값, 기본값은 False입니다. True이면 스켈레톤 반환과 함께 거리 변환 값도 동시에 반환됩니다. 여기서 거리는 중심축의 모든 점과 배경점 사이의 거리를 의미합니다.
import numpy as np import scipy.ndimage as ndi from skimage import morphology import matplotlib.pyplot as plt #编写一个函数,生成测试图像 def microstructure(l=256): n = 5 x, y = np.ogrid[0:l, 0:l] mask = np.zeros((l, l)) generator = np.random.RandomState(1) points = l * generator.rand(2, n**2) mask[(points[0]).astype(np.int), (points[1]).astype(np.int)] = 1 mask = ndi.gaussian_filter(mask, sigma=l/(4.*n)) return mask > mask.mean() data = microstructure(l=64) #生成测试图像 #计算中轴和距离变换值 skel, distance =morphology.medial_axis(data, return_distance=True) #中轴上的点到背景像素点的距离 dist_on_skel = distance * skel fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(8, 4)) ax1.imshow(data, cmap=plt.cm.gray, interpolation='nearest') #用光谱色显示中轴 ax2.imshow(dist_on_skel, cmap=plt.cm.spectral, interpolation='nearest') ax2.contour(data, [0.5], colors='w') #显示轮廓线 fig.tight_layout() plt.show()
2. 유역 알고리즘
유역은 지리상의 능선을 말하며, 물은 일반적으로 능선의 양쪽을 따라 서로 다른 "집수 유역"으로 흐릅니다. 워터셰드 알고리즘은 이미지 분할을 위한 고전적인 알고리즘이자 위상 이론에 기초한 수학적 형태학적 분할 방법입니다. 이미지의 대상 객체가 서로 연결되어 있으면 분할하기가 더 어려워집니다. 이러한 문제를 처리하기 위해 워터셰드 알고리즘이 자주 사용되며 일반적으로 더 나은 결과를 얻습니다.
유역 알고리즘을 거리 변환과 결합하여 "집수 유역"과 "유역 경계"를 찾아 이미지를 분할할 수 있습니다. 이진 이미지의 거리 변환은 각 픽셀에서 가장 가까운 0이 아닌 픽셀까지의 거리입니다. scipy 패키지를 사용하여 거리 변환을 계산할 수 있습니다.
아래 예에서는 두 개의 겹치는 원을 분리해야 합니다. 먼저 원의 흰색 픽셀에서 검은색 배경 픽셀까지의 거리 변환을 계산하고, 이 마커에서 시작하여 거리 변환의 최대값을 초기 마커 지점으로 선택합니다(반전된 색상인 경우 최소값을 취함). 포인트 두 유역은 점점 커지다가 마침내 산 능선에서 교차합니다. 산 능선에서 연결이 끊어지면 두 개의 별도 원이 나타납니다.
예 1: 거리 변환을 기반으로 한 산 능선 이미지 분할
import numpy as np import matplotlib.pyplot as plt from scipy import ndimage as ndi from skimage import morphology,feature #创建两个带有重叠圆的图像 x, y = np.indices((80, 80)) x1, y1, x2, y2 = 28, 28, 44, 52 r1, r2 = 16, 20 mask_circle1 = (x - x1)**2 + (y - y1)**2 < r1**2 mask_circle2 = (x - x2)**2 + (y - y2)**2 < r2**2 image = np.logical_or(mask_circle1, mask_circle2) #现在我们用分水岭算法分离两个圆 distance = ndi.distance_transform_edt(image) #距离变换 local_maxi =feature.peak_local_max(distance, indices=False, footprint=np.ones((3, 3)), labels=image) #寻找峰值 markers = ndi.label(local_maxi)[0] #初始标记点 labels =morphology.watershed(-distance, markers, mask=image) #基于距离变换的分水岭算法 fig, axes = plt.subplots(nrows=2, ncols=2, figsize=(8, 8)) axes = axes.ravel() ax0, ax1, ax2, ax3 = axes ax0.imshow(image, cmap=plt.cm.gray, interpolation='nearest') ax0.set_title("Original") ax1.imshow(-distance, cmap=plt.cm.jet, interpolation='nearest') ax1.set_title("Distance") ax2.imshow(markers, cmap=plt.cm.spectral, interpolation='nearest') ax2.set_title("Markers") ax3.imshow(labels, cmap=plt.cm.spectral, interpolation='nearest') ax3.set_title("Segmented") for ax in axes: ax.axis('off') fig.tight_layout() plt.show()
유역 알고리즘을 그라디언트와 결합하여 이미지 분할을 달성할 수도 있습니다. 일반적으로 그라데이션 이미지는 가장자리에서 더 높은 픽셀 값을 갖고 다른 곳에서는 더 낮은 픽셀 값을 갖는 것이 이상적입니다. 따라서 기울기를 기반으로 능선을 찾을 수 있습니다.
예 2: 그라데이션 기반 유역 이미지 분할
import matplotlib.pyplot as plt from scipy import ndimage as ndi from skimage import morphology,color,data,filter image =color.rgb2gray(data.camera()) denoised = filter.rank.median(image, morphology.disk(2)) #过滤噪声 #将梯度值低于10的作为开始标记点 markers = filter.rank.gradient(denoised, morphology.disk(5)) <10 markers = ndi.label(markers)[0] gradient = filter.rank.gradient(denoised, morphology.disk(2)) #计算梯度 labels =morphology.watershed(gradient, markers, mask=image) #基于梯度的分水岭算法 fig, axes = plt.subplots(nrows=2, ncols=2, figsize=(6, 6)) axes = axes.ravel() ax0, ax1, ax2, ax3 = axes ax0.imshow(image, cmap=plt.cm.gray, interpolation='nearest') ax0.set_title("Original") ax1.imshow(gradient, cmap=plt.cm.spectral, interpolation='nearest') ax1.set_title("Gradient") ax2.imshow(markers, cmap=plt.cm.spectral, interpolation='nearest') ax2.set_title("Markers") ax3.imshow(labels, cmap=plt.cm.spectral, interpolation='nearest') ax3.set_title("Segmented") for ax in axes: ax.axis('off') fig.tight_layout() plt.show()
관련 권장 사항:
위 내용은 Python 디지털 영상처리 뼈대 추출 및 유역 알고리즘의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

Arraysinpython, 특히 비밀 복구를위한 ArecrucialInscientificcomputing.1) theaRearedFornumericalOperations, DataAnalysis 및 MachinELearning.2) Numpy'SimplementationIncensuressuressurations thanpythonlists.3) arraysenablequick

Pyenv, Venv 및 Anaconda를 사용하여 다양한 Python 버전을 관리 할 수 있습니다. 1) PYENV를 사용하여 여러 Python 버전을 관리합니다. Pyenv를 설치하고 글로벌 및 로컬 버전을 설정하십시오. 2) VENV를 사용하여 프로젝트 종속성을 분리하기 위해 가상 환경을 만듭니다. 3) Anaconda를 사용하여 데이터 과학 프로젝트에서 Python 버전을 관리하십시오. 4) 시스템 수준의 작업을 위해 시스템 파이썬을 유지하십시오. 이러한 도구와 전략을 통해 다양한 버전의 Python을 효과적으로 관리하여 프로젝트의 원활한 실행을 보장 할 수 있습니다.

Numpyarrayshaveseveraladvantagesstandardpythonarrays : 1) thearemuchfasterduetoc 기반 간증, 2) thearemorememory-refficient, 특히 withlargedatasets 및 3) wepferoptizedformationsformationstaticaloperations, 만들기, 만들기

어레이의 균질성이 성능에 미치는 영향은 이중입니다. 1) 균질성은 컴파일러가 메모리 액세스를 최적화하고 성능을 향상시킬 수 있습니다. 2) 그러나 유형 다양성을 제한하여 비 효율성으로 이어질 수 있습니다. 요컨대, 올바른 데이터 구조를 선택하는 것이 중요합니다.

tocraftexecutablepythonscripts, 다음과 같은 비스트 프랙티스를 따르십시오 : 1) 1) addashebangline (#!/usr/bin/envpython3) tomakethescriptexecutable.2) setpermissionswithchmod xyour_script.py.3) organtionewithlarstringanduseifname == "__"

numpyarraysarebetterfornumericaloperations 및 multi-dimensionaldata, mumemer-efficientArrays

numpyarraysarebetterforheavynumericalcomputing, whilearraymoduleisiMoresuily-sportainedprojectswithsimpledatatypes.1) numpyarraysofferversatively 및 formanceforgedatasets 및 complexoperations.2) Thearraymoduleisweighit 및 ep

ctypesallowscreatingandmanipulatingC-stylearraysinPython.1)UsectypestointerfacewithClibrariesforperformance.2)CreateC-stylearraysfornumericalcomputations.3)PassarraystoCfunctionsforefficientoperations.However,becautiousofmemorymanagement,performanceo


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

SecList
SecLists는 최고의 보안 테스터의 동반자입니다. 보안 평가 시 자주 사용되는 다양한 유형의 목록을 한 곳에 모아 놓은 것입니다. SecLists는 보안 테스터에게 필요할 수 있는 모든 목록을 편리하게 제공하여 보안 테스트를 더욱 효율적이고 생산적으로 만드는 데 도움이 됩니다. 목록 유형에는 사용자 이름, 비밀번호, URL, 퍼징 페이로드, 민감한 데이터 패턴, 웹 셸 등이 포함됩니다. 테스터는 이 저장소를 새로운 테스트 시스템으로 간단히 가져올 수 있으며 필요한 모든 유형의 목록에 액세스할 수 있습니다.

SublimeText3 Linux 새 버전
SublimeText3 Linux 최신 버전

DVWA
DVWA(Damn Vulnerable Web App)는 매우 취약한 PHP/MySQL 웹 애플리케이션입니다. 주요 목표는 보안 전문가가 법적 환경에서 자신의 기술과 도구를 테스트하고, 웹 개발자가 웹 응용 프로그램 보안 프로세스를 더 잘 이해할 수 있도록 돕고, 교사/학생이 교실 환경 웹 응용 프로그램에서 가르치고 배울 수 있도록 돕는 것입니다. 보안. DVWA의 목표는 다양한 난이도의 간단하고 간단한 인터페이스를 통해 가장 일반적인 웹 취약점 중 일부를 연습하는 것입니다. 이 소프트웨어는

ZendStudio 13.5.1 맥
강력한 PHP 통합 개발 환경

안전한 시험 브라우저
안전한 시험 브라우저는 온라인 시험을 안전하게 치르기 위한 보안 브라우저 환경입니다. 이 소프트웨어는 모든 컴퓨터를 안전한 워크스테이션으로 바꿔줍니다. 이는 모든 유틸리티에 대한 액세스를 제어하고 학생들이 승인되지 않은 리소스를 사용하는 것을 방지합니다.
