찾다
백엔드 개발파이썬 튜토리얼Python 디지털 영상처리 뼈대 추출 및 유역 알고리즘

Python 디지털 영상처리 뼈대 추출 및 유역 알고리즘

Apr 27, 2018 am 10:25 AM
python이미지 처리발췌

이 글에서는 Python 디지털 영상 처리의 뼈대 추출과 유역 알고리즘을 주로 소개하고 참고 자료를 제공합니다. 함께 구경해보세요

뼈대 추출과 유역 알고리즘도 형태학 처리의 범주에 속하며 형태학 서브모듈에 들어있습니다.

1. 뼈대 추출

뼈대 추출, 이진 이미지 희석이라고도 합니다. 이 알고리즘은 특징 추출 및 대상 토폴로지 표현을 위해 연결된 영역을 1픽셀 너비로 세분화할 수 있습니다.

형태학 하위 모듈은 골격 추출을 위한 두 가지 함수, 즉 Skeletonize() 함수와 medial_axis() 함수를 제공합니다. 먼저 Skeletonize() 함수를 살펴보겠습니다.

형식은 skimage.morphology.skeletonize(image)

입력과 출력이 모두 바이너리 이미지입니다.

예제 1:

from skimage import morphology,draw
import numpy as np
import matplotlib.pyplot as plt
#创建一个二值图像用于测试
image = np.zeros((400, 400))
#生成目标对象1(白色U型)
image[10:-10, 10:100] = 1
image[-100:-10, 10:-10] = 1
image[10:-10, -100:-10] = 1
#生成目标对象2(X型)
rs, cs = draw.line(250, 150, 10, 280)
for i in range(10):
 image[rs + i, cs] = 1
rs, cs = draw.line(10, 150, 250, 280)
for i in range(20):
 image[rs + i, cs] = 1
#生成目标对象3(O型)
ir, ic = np.indices(image.shape)
circle1 = (ic - 135)**2 + (ir - 150)**2 < 30**2
circle2 = (ic - 135)**2 + (ir - 150)**2 < 20**2
image[circle1] = 1
image[circle2] = 0

#实施骨架算法
skeleton =morphology.skeletonize(image)

#显示结果
fig, (ax1, ax2) = plt.subplots(nrows=1, ncols=2, figsize=(8, 4))
ax1.imshow(image, cmap=plt.cm.gray)
ax1.axis(&#39;off&#39;)
ax1.set_title(&#39;original&#39;, fontsize=20)
ax2.imshow(skeleton, cmap=plt.cm.gray)
ax2.axis(&#39;off&#39;)
ax2.set_title(&#39;skeleton&#39;, fontsize=20)
fig.tight_layout()
plt.show()

세 개의 대상 개체가 있는 테스트 이미지를 생성하고 각각 뼈대 추출을 수행합니다. 결과는 다음과 같습니다.

예제 2: 시스템 자체의 말 그림을 사용합니다. 뼈대 추출

from skimage import morphology,data,color
import matplotlib.pyplot as plt
image=color.rgb2gray(data.horse())
image=1-image #反相
#实施骨架算法
skeleton =morphology.skeletonize(image)
#显示结果
fig, (ax1, ax2) = plt.subplots(nrows=1, ncols=2, figsize=(8, 4))

ax1.imshow(image, cmap=plt.cm.gray)
ax1.axis(&#39;off&#39;)
ax1.set_title(&#39;original&#39;, fontsize=20)
ax2.imshow(skeleton, cmap=plt.cm.gray)
ax2.axis(&#39;off&#39;)
ax2.set_title(&#39;skeleton&#39;, fontsize=20)
fig.tight_layout()
plt.show()

medial_axis는 내측 축을 의미하며 전경(1개 값) 대상 개체의 너비를 계산하는 형식은

skimage.morphology.입니다. medial_axis( image,mask=None,return_distance=False)

마스크: 마스크. 기본값은 None입니다. 마스크가 주어지면 스켈레톤 알고리즘은 마스크 내의 픽셀 값에 대해서만 수행됩니다.

return_distance: bool 값, 기본값은 False입니다. True이면 스켈레톤 반환과 함께 거리 변환 값도 동시에 반환됩니다. 여기서 거리는 중심축의 모든 점과 배경점 사이의 거리를 의미합니다.

import numpy as np
import scipy.ndimage as ndi
from skimage import morphology
import matplotlib.pyplot as plt
#编写一个函数,生成测试图像
def microstructure(l=256):
 n = 5
 x, y = np.ogrid[0:l, 0:l]
 mask = np.zeros((l, l))
 generator = np.random.RandomState(1)
 points = l * generator.rand(2, n**2)
 mask[(points[0]).astype(np.int), (points[1]).astype(np.int)] = 1
 mask = ndi.gaussian_filter(mask, sigma=l/(4.*n))
 return mask > mask.mean()
data = microstructure(l=64) #生成测试图像

#计算中轴和距离变换值
skel, distance =morphology.medial_axis(data, return_distance=True)
#中轴上的点到背景像素点的距离
dist_on_skel = distance * skel
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(8, 4))
ax1.imshow(data, cmap=plt.cm.gray, interpolation=&#39;nearest&#39;)
#用光谱色显示中轴
ax2.imshow(dist_on_skel, cmap=plt.cm.spectral, interpolation=&#39;nearest&#39;)
ax2.contour(data, [0.5], colors=&#39;w&#39;) #显示轮廓线
fig.tight_layout()
plt.show()

2. 유역 알고리즘

유역은 지리상의 능선을 말하며, 물은 일반적으로 능선의 양쪽을 따라 서로 다른 "집수 유역"으로 흐릅니다. 워터셰드 알고리즘은 이미지 분할을 위한 고전적인 알고리즘이자 위상 이론에 기초한 수학적 형태학적 분할 방법입니다. 이미지의 대상 객체가 서로 연결되어 있으면 분할하기가 더 어려워집니다. 이러한 문제를 처리하기 위해 워터셰드 알고리즘이 자주 사용되며 일반적으로 더 나은 결과를 얻습니다.

유역 알고리즘을 거리 변환과 결합하여 "집수 유역"과 "유역 경계"를 찾아 이미지를 분할할 수 있습니다. 이진 이미지의 거리 변환은 각 픽셀에서 가장 가까운 0이 아닌 픽셀까지의 거리입니다. scipy 패키지를 사용하여 거리 변환을 계산할 수 있습니다.

아래 예에서는 두 개의 겹치는 원을 분리해야 합니다. 먼저 원의 흰색 픽셀에서 검은색 배경 픽셀까지의 거리 변환을 계산하고, 이 마커에서 시작하여 거리 변환의 최대값을 초기 마커 지점으로 선택합니다(반전된 색상인 경우 최소값을 취함). 포인트 두 유역은 점점 커지다가 마침내 산 능선에서 교차합니다. 산 능선에서 연결이 끊어지면 두 개의 별도 원이 나타납니다.

예 1: 거리 변환을 기반으로 한 산 능선 이미지 분할

import numpy as np
import matplotlib.pyplot as plt
from scipy import ndimage as ndi
from skimage import morphology,feature
#创建两个带有重叠圆的图像
x, y = np.indices((80, 80))
x1, y1, x2, y2 = 28, 28, 44, 52
r1, r2 = 16, 20
mask_circle1 = (x - x1)**2 + (y - y1)**2 < r1**2
mask_circle2 = (x - x2)**2 + (y - y2)**2 < r2**2
image = np.logical_or(mask_circle1, mask_circle2)
#现在我们用分水岭算法分离两个圆
distance = ndi.distance_transform_edt(image) #距离变换
local_maxi =feature.peak_local_max(distance, indices=False, footprint=np.ones((3, 3)),
       labels=image) #寻找峰值
markers = ndi.label(local_maxi)[0] #初始标记点
labels =morphology.watershed(-distance, markers, mask=image) #基于距离变换的分水岭算法
fig, axes = plt.subplots(nrows=2, ncols=2, figsize=(8, 8))
axes = axes.ravel()
ax0, ax1, ax2, ax3 = axes
ax0.imshow(image, cmap=plt.cm.gray, interpolation=&#39;nearest&#39;)
ax0.set_title("Original")
ax1.imshow(-distance, cmap=plt.cm.jet, interpolation=&#39;nearest&#39;)
ax1.set_title("Distance")
ax2.imshow(markers, cmap=plt.cm.spectral, interpolation=&#39;nearest&#39;)
ax2.set_title("Markers")
ax3.imshow(labels, cmap=plt.cm.spectral, interpolation=&#39;nearest&#39;)
ax3.set_title("Segmented")
for ax in axes:
 ax.axis(&#39;off&#39;)
fig.tight_layout()
plt.show()

유역 알고리즘을 그라디언트와 결합하여 이미지 분할을 달성할 수도 있습니다. 일반적으로 그라데이션 이미지는 가장자리에서 더 높은 픽셀 값을 갖고 다른 곳에서는 더 낮은 픽셀 값을 갖는 것이 이상적입니다. 따라서 기울기를 기반으로 능선을 찾을 수 있습니다.

예 2: 그라데이션 기반 유역 이미지 분할

import matplotlib.pyplot as plt
from scipy import ndimage as ndi
from skimage import morphology,color,data,filter
image =color.rgb2gray(data.camera())
denoised = filter.rank.median(image, morphology.disk(2)) #过滤噪声
#将梯度值低于10的作为开始标记点
markers = filter.rank.gradient(denoised, morphology.disk(5)) <10
markers = ndi.label(markers)[0]
gradient = filter.rank.gradient(denoised, morphology.disk(2)) #计算梯度
labels =morphology.watershed(gradient, markers, mask=image) #基于梯度的分水岭算法
fig, axes = plt.subplots(nrows=2, ncols=2, figsize=(6, 6))
axes = axes.ravel()
ax0, ax1, ax2, ax3 = axes
ax0.imshow(image, cmap=plt.cm.gray, interpolation=&#39;nearest&#39;)
ax0.set_title("Original")
ax1.imshow(gradient, cmap=plt.cm.spectral, interpolation=&#39;nearest&#39;)
ax1.set_title("Gradient")
ax2.imshow(markers, cmap=plt.cm.spectral, interpolation=&#39;nearest&#39;)
ax2.set_title("Markers")
ax3.imshow(labels, cmap=plt.cm.spectral, interpolation=&#39;nearest&#39;)
ax3.set_title("Segmented")
for ax in axes:
 ax.axis(&#39;off&#39;)
fig.tight_layout()
plt.show()

관련 권장 사항:

파이썬 디지털 이미지 처리의 고급 형태학적 처리

위 내용은 Python 디지털 영상처리 뼈대 추출 및 유역 알고리즘의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.
2 시간의 파이썬 계획 : 현실적인 접근2 시간의 파이썬 계획 : 현실적인 접근Apr 11, 2025 am 12:04 AM

2 시간 이내에 Python의 기본 프로그래밍 개념과 기술을 배울 수 있습니다. 1. 변수 및 데이터 유형을 배우기, 2. 마스터 제어 흐름 (조건부 명세서 및 루프), 3. 기능의 정의 및 사용을 이해하십시오. 4. 간단한 예제 및 코드 스 니펫을 통해 Python 프로그래밍을 신속하게 시작하십시오.

파이썬 : 기본 응용 프로그램 탐색파이썬 : 기본 응용 프로그램 탐색Apr 10, 2025 am 09:41 AM

Python은 웹 개발, 데이터 과학, 기계 학습, 자동화 및 스크립팅 분야에서 널리 사용됩니다. 1) 웹 개발에서 Django 및 Flask 프레임 워크는 개발 프로세스를 단순화합니다. 2) 데이터 과학 및 기계 학습 분야에서 Numpy, Pandas, Scikit-Learn 및 Tensorflow 라이브러리는 강력한 지원을 제공합니다. 3) 자동화 및 스크립팅 측면에서 Python은 자동화 된 테스트 및 시스템 관리와 ​​같은 작업에 적합합니다.

2 시간 안에 얼마나 많은 파이썬을 배울 수 있습니까?2 시간 안에 얼마나 많은 파이썬을 배울 수 있습니까?Apr 09, 2025 pm 04:33 PM

2 시간 이내에 파이썬의 기본 사항을 배울 수 있습니다. 1. 변수 및 데이터 유형을 배우십시오. 이를 통해 간단한 파이썬 프로그램 작성을 시작하는 데 도움이됩니다.

10 시간 이내에 프로젝트 및 문제 중심 방법에서 컴퓨터 초보자 프로그래밍 기본 사항을 가르치는 방법?10 시간 이내에 프로젝트 및 문제 중심 방법에서 컴퓨터 초보자 프로그래밍 기본 사항을 가르치는 방법?Apr 02, 2025 am 07:18 AM

10 시간 이내에 컴퓨터 초보자 프로그래밍 기본 사항을 가르치는 방법은 무엇입니까? 컴퓨터 초보자에게 프로그래밍 지식을 가르치는 데 10 시간 밖에 걸리지 않는다면 무엇을 가르치기로 선택 하시겠습니까?

중간 독서를 위해 Fiddler를 사용할 때 브라우저에서 감지되는 것을 피하는 방법은 무엇입니까?중간 독서를 위해 Fiddler를 사용할 때 브라우저에서 감지되는 것을 피하는 방법은 무엇입니까?Apr 02, 2025 am 07:15 AM

Fiddlerevery Where를 사용할 때 Man-in-the-Middle Reading에 Fiddlereverywhere를 사용할 때 감지되는 방법 ...

Python 3.6에 피클 파일을로드 할 때 '__builtin__'모듈을 찾을 수없는 경우 어떻게해야합니까?Python 3.6에 피클 파일을로드 할 때 '__builtin__'모듈을 찾을 수없는 경우 어떻게해야합니까?Apr 02, 2025 am 07:12 AM

Python 3.6에 피클 파일로드 3.6 환경 보고서 오류 : modulenotfounderror : nomodulename ...

경치 좋은 스팟 코멘트 분석에서 Jieba Word 세분화의 정확성을 향상시키는 방법은 무엇입니까?경치 좋은 스팟 코멘트 분석에서 Jieba Word 세분화의 정확성을 향상시키는 방법은 무엇입니까?Apr 02, 2025 am 07:09 AM

경치 좋은 스팟 댓글 분석에서 Jieba Word 세분화 문제를 해결하는 방법은 무엇입니까? 경치가 좋은 스팟 댓글 및 분석을 수행 할 때 종종 Jieba Word 세분화 도구를 사용하여 텍스트를 처리합니다 ...

정규 표현식을 사용하여 첫 번째 닫힌 태그와 정지와 일치하는 방법은 무엇입니까?정규 표현식을 사용하여 첫 번째 닫힌 태그와 정지와 일치하는 방법은 무엇입니까?Apr 02, 2025 am 07:06 AM

정규 표현식을 사용하여 첫 번째 닫힌 태그와 정지와 일치하는 방법은 무엇입니까? HTML 또는 기타 마크 업 언어를 다룰 때는 정규 표현식이 종종 필요합니다.

See all articles

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

AI Hentai Generator

AI Hentai Generator

AI Hentai를 무료로 생성하십시오.

인기 기사

R.E.P.O. 에너지 결정과 그들이하는 일 (노란색 크리스탈)
3 몇 주 전By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. 최고의 그래픽 설정
3 몇 주 전By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. 아무도들을 수없는 경우 오디오를 수정하는 방법
3 몇 주 전By尊渡假赌尊渡假赌尊渡假赌
WWE 2K25 : Myrise에서 모든 것을 잠금 해제하는 방법
3 몇 주 전By尊渡假赌尊渡假赌尊渡假赌

뜨거운 도구

mPDF

mPDF

mPDF는 UTF-8로 인코딩된 HTML에서 PDF 파일을 생성할 수 있는 PHP 라이브러리입니다. 원저자인 Ian Back은 자신의 웹 사이트에서 "즉시" PDF 파일을 출력하고 다양한 언어를 처리하기 위해 mPDF를 작성했습니다. HTML2FPDF와 같은 원본 스크립트보다 유니코드 글꼴을 사용할 때 속도가 느리고 더 큰 파일을 생성하지만 CSS 스타일 등을 지원하고 많은 개선 사항이 있습니다. RTL(아랍어, 히브리어), CJK(중국어, 일본어, 한국어)를 포함한 거의 모든 언어를 지원합니다. 중첩된 블록 수준 요소(예: P, DIV)를 지원합니다.

SublimeText3 Linux 새 버전

SublimeText3 Linux 새 버전

SublimeText3 Linux 최신 버전

Dreamweaver Mac版

Dreamweaver Mac版

시각적 웹 개발 도구

SublimeText3 영어 버전

SublimeText3 영어 버전

권장 사항: Win 버전, 코드 프롬프트 지원!

DVWA

DVWA

DVWA(Damn Vulnerable Web App)는 매우 취약한 PHP/MySQL 웹 애플리케이션입니다. 주요 목표는 보안 전문가가 법적 환경에서 자신의 기술과 도구를 테스트하고, 웹 개발자가 웹 응용 프로그램 보안 프로세스를 더 잘 이해할 수 있도록 돕고, 교사/학생이 교실 환경 웹 응용 프로그램에서 가르치고 배울 수 있도록 돕는 것입니다. 보안. DVWA의 목표는 다양한 난이도의 간단하고 간단한 인터페이스를 통해 가장 일반적인 웹 취약점 중 일부를 연습하는 것입니다. 이 소프트웨어는