다음은 numpy.transpose의 3차원 배열 전치 방법에 대한 글입니다. 참고할만한 좋은 내용이 있어 모두에게 도움이 되었으면 좋겠습니다. 와서 살펴봅시다
아래와 같이
import numpy as np
3차원 배열
arr1 = np.arange(16).reshape((2, 2, 4)) #[[[ 0 1 2 3] # [ 4 5 6 7]] # [[ 8 9 10 11] # [12 13 14 15]]] arr2=arr1.transpose((1,0,2)) #[[[ 0 1 2 3] # [ 8 9 10 11]] # # [[ 4 5 6 7] # [12 13 14 15]]]
양수열은 (0, 1, 2) ,
#[[[ 0 1 2 3] # [ 4 5 6 7]] # [[ 8 9 10 11] # [12 13 14 15]]]
tanspose (1, 0, 2)를 입력하면 왜 배열이
#[[[ 0 1 2 3] # [ 8 9 10 11]] # # [[ 4 5 6 7] # [12 13 14 15]]]
가 되는가? 주의 깊게 관찰해 보면 전치 후 배열과 전치 후 배열의 차이를 알 수 있습니다. 전치 전 배열은 첫 번째 페이지의 두 번째 줄과 두 번째 페이지의 첫 번째 줄이 바뀌는데 왜 그럴까요?
arr1[0,1,0]을 사용하면 인덱스 값이 4
arr2[1,0,0]을 사용하면 인덱스 값이 4
변경 사항과 양수 순서를 비교하세요 인덱스 매개변수 테이블의 전치 순서 차이와 어떤 연관이 있는 것 같습니다
arr1 배열의 경우 인덱스 매개변수 테이블 [0, 0, x]는 현재 두 매개변수 이후의 첫 번째 행을 나타낼 수 있습니다. 같은 요소의 인덱스가 바뀌었습니다. 매개변수 테이블은 변경되지 않았습니다
따라서 arr2의 첫 번째 페이지의 첫 번째 행은 arr1의 첫 번째 페이지의 첫 번째 행과 같습니다
arr1 배열의 경우 인덱스 매개변수 테이블 [0, 1, x]는 첫 번째 페이지의 두 번째 행을 나타낼 수 있습니다. 현재 두 매개변수가 교체된 후 [0, 1, 0]과 같은 동일한 요소의 인덱스 값은 [1, 0, 0]이 됩니다. ,
인덱스 값이 4인 인덱스 매개변수 테이블의 차이점을 설명합니다.
이것은 대략적인 개념이므로 배열의 첫 번째 페이지의 두 번째 행인 transpose(1,0,2)와 두 번째 페이지의 첫 번째 행이 바뀌었습니다
다음 네 가지 전치 방법도 거의 같은 생각입니다. 주의 깊게 관찰하면 이해하기 어렵지 않을 것입니다.
arr3=arr1.transpose((0,2,1)) # [[[ 0 4] # [ 1 5] # [ 2 6] # [ 3 7]] # # [[ 8 12] # [ 9 13] # [10 14] # [11 15]]] arr4=arr1.transpose((2,0,1)) #[[[ 0 4] # [ 8 12]] # # [[ 1 5] # [ 9 13]] # # [[ 2 6] # [10 14]] # # [[ 3 7] # [11 15]]]
여기서 주목해야 할 것은 arr4 배열이 4페이지입니다. 페이지 번호와 줄 코드가 바뀌고
페이지 번호가 2에서 4
으로 변경되어 2가 되었기 때문입니다.
arr5=arr1.transpose((2,1,0)) #[[[ 0 8] # [ 4 12]] # # [[ 1 9] # [ 5 13]] # # [[ 2 10] # [ 6 14]] # # [[ 3 11] # [ 7 15]]] arr6=arr1.transpose((1,2,0)) #[[[ 0 8] # [ 1 9] # [ 2 10] # [ 3 11]] # # [[ 4 12] # [ 5 13] # [ 6 14] # [ 7 15]]]
또한 전치 (2, 0, 1)은 먼저 전치 (0, 2, 1)로 볼 수 있습니다. 그런 다음 전치 (1, 0, 2)
전치 (2, 1, 0) 먼저 전치 (1, 0, 2), 다음 전치 (0, 2, 1), 마지막으로 전치 (1, 0, 2)로 볼 수 있습니다
전치 (1, 2, 0)는 전치로 볼 수 있습니다 (1, 0, 2)를 먼저 바꾼 다음 (0, 2, 1)을 바꿉니다
코드는 다음과 같이 작성할 수 있습니다.
arr4=arr1.transpose(0,2,1).transpose(1,0,2)
#[[[ 0 4] # [ 8 12]] # # [[ 1 5] # [ 9 13]] # # [[ 2 6] # [10 14]] # # [[ 3 7] # [11 15]]]
같은 결과입니다!
관련 권장사항:
위 내용은 3차원 배열을 전치하는 numpy.transpose 메서드의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

Python은 배우고 사용하기 쉽고 C는 더 강력하지만 복잡합니다. 1. Python Syntax는 간결하며 초보자에게 적합합니다. 동적 타이핑 및 자동 메모리 관리를 사용하면 사용하기 쉽지만 런타임 오류가 발생할 수 있습니다. 2.C는 고성능 응용 프로그램에 적합한 저수준 제어 및 고급 기능을 제공하지만 학습 임계 값이 높고 수동 메모리 및 유형 안전 관리가 필요합니다.

Python과 C는 메모리 관리 및 제어에 상당한 차이가 있습니다. 1. Python은 참조 계산 및 쓰레기 수집을 기반으로 자동 메모리 관리를 사용하여 프로그래머의 작업을 단순화합니다. 2.C는 메모리 수동 관리가 필요하므로 더 많은 제어를 제공하지만 복잡성과 오류 위험을 증가시킵니다. 선택할 언어는 프로젝트 요구 사항 및 팀 기술 스택을 기반으로해야합니다.

과학 컴퓨팅에서 Python의 응용 프로그램에는 데이터 분석, 머신 러닝, 수치 시뮬레이션 및 시각화가 포함됩니다. 1.numpy는 효율적인 다차원 배열 및 수학적 함수를 제공합니다. 2. Scipy는 Numpy 기능을 확장하고 최적화 및 선형 대수 도구를 제공합니다. 3. 팬더는 데이터 처리 및 분석에 사용됩니다. 4. matplotlib는 다양한 그래프와 시각적 결과를 생성하는 데 사용됩니다.

Python 또는 C를 선택할 것인지 프로젝트 요구 사항에 따라 다릅니다. 1) Python은 간결한 구문 및 풍부한 라이브러리로 인해 빠른 개발, 데이터 과학 및 스크립팅에 적합합니다. 2) C는 컴파일 및 수동 메모리 관리로 인해 시스템 프로그래밍 및 게임 개발과 같은 고성능 및 기본 제어가 필요한 시나리오에 적합합니다.

Python은 데이터 과학 및 기계 학습에 널리 사용되며 주로 단순성과 강력한 라이브러리 생태계에 의존합니다. 1) 팬더는 데이터 처리 및 분석에 사용되며, 2) Numpy는 효율적인 수치 계산을 제공하며 3) Scikit-Learn은 기계 학습 모델 구성 및 최적화에 사용되며 이러한 라이브러리는 Python을 데이터 과학 및 기계 학습에 이상적인 도구로 만듭니다.

하루에 2 시간 동안 파이썬을 배우는 것으로 충분합니까? 목표와 학습 방법에 따라 다릅니다. 1) 명확한 학습 계획을 개발, 2) 적절한 학습 자원 및 방법을 선택하고 3) 실습 연습 및 검토 및 통합 연습 및 검토 및 통합,이 기간 동안 Python의 기본 지식과 고급 기능을 점차적으로 마스터 할 수 있습니다.

웹 개발에서 Python의 주요 응용 프로그램에는 Django 및 Flask 프레임 워크 사용, API 개발, 데이터 분석 및 시각화, 머신 러닝 및 AI 및 성능 최적화가 포함됩니다. 1. Django 및 Flask 프레임 워크 : Django는 복잡한 응용 분야의 빠른 개발에 적합하며 플라스크는 소형 또는 고도로 맞춤형 프로젝트에 적합합니다. 2. API 개발 : Flask 또는 DjangorestFramework를 사용하여 RESTFULAPI를 구축하십시오. 3. 데이터 분석 및 시각화 : Python을 사용하여 데이터를 처리하고 웹 인터페이스를 통해 표시합니다. 4. 머신 러닝 및 AI : 파이썬은 지능형 웹 애플리케이션을 구축하는 데 사용됩니다. 5. 성능 최적화 : 비동기 프로그래밍, 캐싱 및 코드를 통해 최적화

Python은 개발 효율에서 C보다 낫지 만 C는 실행 성능이 높습니다. 1. Python의 간결한 구문 및 풍부한 라이브러리는 개발 효율성을 향상시킵니다. 2.C의 컴파일 유형 특성 및 하드웨어 제어는 실행 성능을 향상시킵니다. 선택할 때는 프로젝트 요구에 따라 개발 속도 및 실행 효율성을 평가해야합니다.


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

MinGW - Windows용 미니멀리스트 GNU
이 프로젝트는 osdn.net/projects/mingw로 마이그레이션되는 중입니다. 계속해서 그곳에서 우리를 팔로우할 수 있습니다. MinGW: GCC(GNU Compiler Collection)의 기본 Windows 포트로, 기본 Windows 애플리케이션을 구축하기 위한 무료 배포 가능 가져오기 라이브러리 및 헤더 파일로 C99 기능을 지원하는 MSVC 런타임에 대한 확장이 포함되어 있습니다. 모든 MinGW 소프트웨어는 64비트 Windows 플랫폼에서 실행될 수 있습니다.

드림위버 CS6
시각적 웹 개발 도구

mPDF
mPDF는 UTF-8로 인코딩된 HTML에서 PDF 파일을 생성할 수 있는 PHP 라이브러리입니다. 원저자인 Ian Back은 자신의 웹 사이트에서 "즉시" PDF 파일을 출력하고 다양한 언어를 처리하기 위해 mPDF를 작성했습니다. HTML2FPDF와 같은 원본 스크립트보다 유니코드 글꼴을 사용할 때 속도가 느리고 더 큰 파일을 생성하지만 CSS 스타일 등을 지원하고 많은 개선 사항이 있습니다. RTL(아랍어, 히브리어), CJK(중국어, 일본어, 한국어)를 포함한 거의 모든 언어를 지원합니다. 중첩된 블록 수준 요소(예: P, DIV)를 지원합니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경
