이 글의 내용은 분류 평가 지표와 회귀 평가 지표에 대한 자세한 설명과 Python 코드 구현에 대한 내용입니다. 이제 필요한 친구들이 참고할 수 있도록 공유하겠습니다.
1. 개념
성과 측정(평가) 지표는 크게 두 가지 범주로 나뉜다.
1) 분류 평가 지표(분류), 주로 분석, 이산, 정수. 구체적인 지표로는 정확도(accuracy), 정밀도(precision), 리콜(recall), F값, P-R 곡선, ROC 곡선, AUC 등이 있습니다.
2) 회귀평가지수(regression)는 주로 정수와 실수의 관계를 분석합니다. 구체적인 지표로는 explianed_variance_score, 평균 절대 오차 MAE(mean_absolute_error), 평균 제곱 오차 MSE(mean-squared_error), 평균 제곱근 차이 RMSE, 교차 엔트로피 손실(Log 손실, 교차 엔트로피 손실), R 제곱 값(결정 계수)이 있습니다. , r2_score).
1.1. 전제
긍정적인 범주와 부정적인 범주만 있다고 가정합니다. 일반적으로 우려되는 범주는 긍정적인 범주이고 다른 범주는 부정적인 범주입니다. 따라서 다중 클래스 문제도 두 가지로 요약될 수 있습니다. 카테고리 )
혼동행렬은 다음과 같습니다
실제 카테고리 | 예측 카테고리 | |||
긍정적 | 부정적 | summary | ||
긍정적 | TP | FN | P(실제로는 긍정) | |
negative | FP | TN | N(실제로는 부정) |
AB 모드: 첫 번째는 예측 결과가 right 또는 false , 두 번째 항목은 예측된 카테고리를 나타냅니다. 예를 들어 TP는 참 긍정(True Positive)을 의미합니다. 즉, 올바른 예측은 긍정 클래스입니다. FN은 거짓 부정(False Negative)을 의미합니다. 즉, 잘못된 예측은 부정 클래스입니다.
2. 평가 지표(성과 측정)
2.1. 분류 평가 지표
2.1.1 가치 지표 - 정확도, 정밀도, 재현율, F 값
측정 | 정확도(정확도) | 정밀도 ( Precision) | Recall(Recall) | F value |
Definition | 총 샘플 수 대비 정확하게 분류된 샘플 수의 비율(스팸으로 예측되는 실제 스팸 문자 메시지의 비율) | 결정 as 긍정 사례 수에 대한 참 긍정 사례 수의 비율(올바르게 분류되어 발견된 모든 실제 스팸 문자 메시지의 비율) | 전체 긍정 사례 수에 대한 참 긍정 사례 수의 비율 | 정확도 조화 평균 F-score |
(재현율 포함)은 | accuracy=
| 을 의미합니다. 정밀도=
|
회상=
|
F - 점수 =
|
1. 정밀도는 정밀도율이라고도 하고, 재현율은 재현율이라고도 합니다
2. 더 일반적으로 사용되는 것은 F1,
python3.6 코드 구현:
#调用sklearn库中的指标求解from sklearn import metricsfrom sklearn.metrics import precision_recall_curvefrom sklearn.metrics import average_precision_scorefrom sklearn.metrics import accuracy_score#给出分类结果y_pred = [0, 1, 0, 0] y_true = [0, 1, 1, 1] print("accuracy_score:", accuracy_score(y_true, y_pred)) print("precision_score:", metrics.precision_score(y_true, y_pred)) print("recall_score:", metrics.recall_score(y_true, y_pred)) print("f1_score:", metrics.f1_score(y_true, y_pred)) print("f0.5_score:", metrics.fbeta_score(y_true, y_pred, beta=0.5)) print("f2_score:", metrics.fbeta_score(y_true, y_pred, beta=2.0))
2.1.2 상관 곡선-P-R 곡선, ROC 곡선 및 AUC 값
1) P-R curve
단계:
1. "점수" 값을 높은 것에서 낮은 것으로 정렬하고 이를 임계값으로 순서대로 사용합니다.
2. 각 임계값에 대해 이 임계값보다 크거나 같은 "점수" 값을 가진 샘플을 테스트합니다. 긍정적인 사례로 간주되고 나머지는 부정적인 사례로 간주됩니다. 따라서 일련의 예측 수치가 형성됩니다.
eg.
0.9를 임계값으로 설정하면 첫 번째 테스트 샘플은 긍정적인 예이고 2, 3, 4, 5는 부정적인 예입니다.
우리는
긍정적인 것으로 예측합니다. 예를 들어 부정적인 예로 예측 된 예는 | toTalSpositive 사례 (점수는 임계 값보다 큽니다) | 0.9 | |
1 | 1INGITATION CASE (점수는 임계 값보다 작음) | 0.2+0.3+0.3+0.35 = 1.15 | |
4 | 정밀도= | ||
recall=
임계값 아래 부분은 음의 예로 처리되며 예측된 음의 예의 값은 올바른 예측 값입니다. 즉, 양의 예인 경우 음의 예인 경우 TP가 사용됩니다. TN이 취해지며 둘 다 예측 점수입니다. |
Python은 의사 코드를 구현합니다
세로축: True 양성률 tp 비율 = TP / N가로축: 거짓양성률 fp 비율 = FP/N
2) ROC 곡선
단계:
1. "점수" 값을 높은 값에서 낮은 값으로 정렬하여 차례로 임계값으로 사용합니다. 2. 각 임계값에 대해 더 큰 "점수" 값으로 샘플을 테스트합니다. 이 임계값 이상이면 긍정적인 예로 간주되고, 다른 것들은 부정적인 예로 간주됩니다. 따라서 일련의 예측 수치가 형성됩니다.
P-R 곡선 계산과 유사하므로 자세히 설명하지 않겠습니다
붓꽃 데이터 세트의 ROC 이미지는
AUC 값은 분류기에 대한 전체 수치 값을 제공합니다. 일반적으로 AUC가 클수록 분류기가 우수하며 값은 [0, 1]2) 평균 절대 오차 MAE(Mean Absolute Error)
2.2입니다. 회귀 평가 지수
1) 해석 가능한 분산 점수
3) MSE(평균 제곱 오차) 4) 물류 회귀 손실
5) 일관성 평가 - 피어슨 상관 계수 방법
파이썬 코드 구현
from sklearn.metrics import log_loss log_loss(y_true, y_pred)from scipy.stats import pearsonr pearsonr(rater1, rater2)from sklearn.metrics import cohen_kappa_score cohen_kappa_score(rater1, rater2)
위 내용은 분류 평가 지표와 회귀 평가 지표에 대한 자세한 설명과 Python 코드 구현의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

Arraysinpython, 특히 비밀 복구를위한 ArecrucialInscientificcomputing.1) theaRearedFornumericalOperations, DataAnalysis 및 MachinELearning.2) Numpy'SimplementationIncensuressuressurations thanpythonlists.3) arraysenablequick

Pyenv, Venv 및 Anaconda를 사용하여 다양한 Python 버전을 관리 할 수 있습니다. 1) PYENV를 사용하여 여러 Python 버전을 관리합니다. Pyenv를 설치하고 글로벌 및 로컬 버전을 설정하십시오. 2) VENV를 사용하여 프로젝트 종속성을 분리하기 위해 가상 환경을 만듭니다. 3) Anaconda를 사용하여 데이터 과학 프로젝트에서 Python 버전을 관리하십시오. 4) 시스템 수준의 작업을 위해 시스템 파이썬을 유지하십시오. 이러한 도구와 전략을 통해 다양한 버전의 Python을 효과적으로 관리하여 프로젝트의 원활한 실행을 보장 할 수 있습니다.

Numpyarrayshaveseveraladvantagesstandardpythonarrays : 1) thearemuchfasterduetoc 기반 간증, 2) thearemorememory-refficient, 특히 withlargedatasets 및 3) wepferoptizedformationsformationstaticaloperations, 만들기, 만들기

어레이의 균질성이 성능에 미치는 영향은 이중입니다. 1) 균질성은 컴파일러가 메모리 액세스를 최적화하고 성능을 향상시킬 수 있습니다. 2) 그러나 유형 다양성을 제한하여 비 효율성으로 이어질 수 있습니다. 요컨대, 올바른 데이터 구조를 선택하는 것이 중요합니다.

tocraftexecutablepythonscripts, 다음과 같은 비스트 프랙티스를 따르십시오 : 1) 1) addashebangline (#!/usr/bin/envpython3) tomakethescriptexecutable.2) setpermissionswithchmod xyour_script.py.3) organtionewithlarstringanduseifname == "__"

numpyarraysarebetterfornumericaloperations 및 multi-dimensionaldata, mumemer-efficientArrays

numpyarraysarebetterforheavynumericalcomputing, whilearraymoduleisiMoresuily-sportainedprojectswithsimpledatatypes.1) numpyarraysofferversatively 및 formanceforgedatasets 및 complexoperations.2) Thearraymoduleisweighit 및 ep

ctypesallowscreatingandmanipulatingC-stylearraysinPython.1)UsectypestointerfacewithClibrariesforperformance.2)CreateC-stylearraysfornumericalcomputations.3)PassarraystoCfunctionsforefficientoperations.However,becautiousofmemorymanagement,performanceo


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

SublimeText3 Linux 새 버전
SublimeText3 Linux 최신 버전

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

Atom Editor Mac 버전 다운로드
가장 인기 있는 오픈 소스 편집기

에디트플러스 중국어 크랙 버전
작은 크기, 구문 강조, 코드 프롬프트 기능을 지원하지 않음

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경
