찾다
백엔드 개발파이썬 튜토리얼분류 평가 지표와 회귀 평가 지표에 대한 자세한 설명과 Python 코드 구현

이 글의 내용은 분류 평가 지표와 회귀 평가 지표에 대한 자세한 설명과 Python 코드 구현에 대한 내용입니다. 이제 필요한 친구들이 참고할 수 있도록 공유하겠습니다.

1. 개념

성과 측정(평가) 지표는 크게 두 가지 범주로 나뉜다.
1) 분류 평가 지표(분류), 주로 분석, 이산, 정수. 구체적인 지표로는 정확도(accuracy), 정밀도(precision), 리콜(recall), F값, P-R 곡선, ROC 곡선, AUC 등이 있습니다.
2) 회귀평가지수(regression)는 주로 정수와 실수의 관계를 분석합니다. 구체적인 지표로는 explianed_variance_score, 평균 절대 오차 MAE(mean_absolute_error), 평균 제곱 오차 MSE(mean-squared_error), 평균 제곱근 차이 RMSE, 교차 엔트로피 손실(Log 손실, 교차 엔트로피 손실), R 제곱 값(결정 계수)이 있습니다. , r2_score).

1.1. 전제

긍정적인 범주와 부정적인 범주만 있다고 가정합니다. 일반적으로 우려되는 범주는 긍정적인 범주이고 다른 범주는 부정적인 범주입니다. 따라서 다중 클래스 문제도 두 가지로 요약될 수 있습니다. 카테고리 )
혼동행렬은 다음과 같습니다

실제 카테고리 예측 카테고리

긍정적 부정적 summary
긍정적 TP FN P(실제로는 긍정)
negative FP TN N(실제로는 부정)

AB 모드: 첫 번째는 예측 결과가 right 또는 false , 두 번째 항목은 예측된 카테고리를 나타냅니다. 예를 들어 TP는 참 긍정(True Positive)을 의미합니다. 즉, 올바른 예측은 긍정 클래스입니다. FN은 거짓 부정(False Negative)을 의미합니다. 즉, 잘못된 예측은 부정 클래스입니다.

2. 평가 지표(성과 측정)

2.1. 분류 평가 지표
2.1.1 가치 지표 - 정확도, 정밀도, 재현율, F 값
을 의미합니다.
측정 정확도(정확도) 정밀도 ( Precision) Recall(Recall) F value
Definition 총 샘플 수 대비 정확하게 분류된 샘플 수의 비율(스팸으로 예측되는 실제 스팸 문자 메시지의 비율) 결정 as 긍정 사례 수에 대한 참 긍정 사례 수의 비율(올바르게 분류되어 발견된 모든 실제 스팸 문자 메시지의 비율) 전체 긍정 사례 수에 대한 참 긍정 사례 수의 비율 정확도 조화 평균 F-score
(재현율 포함)은 accuracy=

정밀도=

회상=

F - 점수 =

1. 정밀도는 정밀도율이라고도 하고, 재현율은 재현율이라고도 합니다
2. 더 일반적으로 사용되는 것은 F1,

python3.6 코드 구현:

#调用sklearn库中的指标求解from sklearn import metricsfrom sklearn.metrics import precision_recall_curvefrom sklearn.metrics import average_precision_scorefrom sklearn.metrics import accuracy_score#给出分类结果y_pred = [0, 1, 0, 0]
y_true = [0, 1, 1, 1]
print("accuracy_score:", accuracy_score(y_true, y_pred))
print("precision_score:", metrics.precision_score(y_true, y_pred))
print("recall_score:", metrics.recall_score(y_true, y_pred))
print("f1_score:", metrics.f1_score(y_true, y_pred))
print("f0.5_score:", metrics.fbeta_score(y_true, y_pred, beta=0.5))
print("f2_score:", metrics.fbeta_score(y_true, y_pred, beta=2.0))
2.1.2 상관 곡선-P-R 곡선, ROC 곡선 및 AUC 값

1) P-R curve
단계:
1. "점수" 값을 높은 것에서 낮은 것으로 정렬하고 이를 임계값으로 순서대로 사용합니다.
2. 각 임계값에 대해 이 임계값보다 크거나 같은 "점수" 값을 가진 샘플을 테스트합니다. 긍정적인 사례로 간주되고 나머지는 부정적인 사례로 간주됩니다. 따라서 일련의 예측 수치가 형성됩니다.
eg.
분류 평가 지표와 회귀 평가 지표에 대한 자세한 설명과 Python 코드 구현
0.9를 임계값으로 설정하면 첫 번째 테스트 샘플은 긍정적인 예이고 2, 3, 4, 5는 부정적인 예입니다.
우리는

0.10.8+ 0.7+0.7+0.65 = 2.85 Python은 의사 코드를 구현합니다
#precision和recall的求法如上
#主要介绍一下python画图的库
import matplotlib.pyplot ad plt
#主要用于矩阵运算的库
import numpy as np#导入iris数据及训练见前一博文
...
#加入800个噪声特征,增加图像的复杂度
#将150*800的噪声特征矩阵与150*4的鸢尾花数据集列合并
X = np.c_[X, np.random.RandomState(0).randn(n_samples, 200*n_features)]
#计算precision,recall得到数组
for i in range(n_classes):
    #计算三类鸢尾花的评价指标, _作为临时的名称使用
    precision[i], recall[i], _ = precision_recall_curve(y_test[:, i], y_score[:,i])#plot作图plt.clf()
for i in range(n_classes):
    plt.plot(recall[i], precision[i])
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel("Recall")
plt.ylabel("Precision")
plt.show()

긍정적인 것으로 예측합니다. 예를 들어 부정적인 예로 예측 된 예는 toTalSpositive 사례 (점수는 임계 값보다 큽니다) 0.9
1 1INGITATION CASE (점수는 임계 값보다 작음) 0.2+0.3+0.3+0.35 = 1.15
4 정밀도=
recall=

임계값 아래 부분은 음의 예로 처리되며 예측된 음의 예의 값은 올바른 예측 값입니다. 즉, 양의 예인 경우 음의 예인 경우 TP가 사용됩니다. TN이 취해지며 둘 다 예측 점수입니다.
위 코드를 완성하면 붓꽃 데이터 세트의 P-R 곡선을 얻습니다


2) ROC 곡선

가로축: 거짓양성률 fp 비율 = FP/N
세로축: True 양성률 tp 비율 = TP / N

단계:
1. "점수" 값을 높은 값에서 낮은 값으로 정렬하여 차례로 임계값으로 사용합니다. 분류 평가 지표와 회귀 평가 지표에 대한 자세한 설명과 Python 코드 구현 2. 각 임계값에 대해 더 큰 "점수" 값으로 샘플을 테스트합니다. 이 임계값 이상이면 긍정적인 예로 간주되고, 다른 것들은 부정적인 예로 간주됩니다. 따라서 일련의 예측 수치가 형성됩니다.


P-R 곡선 계산과 유사하므로 자세히 설명하지 않겠습니다
붓꽃 데이터 세트의 ROC 이미지는

AUC(Area Under Curve)는 ROC 곡선 아래의 면적으로 정의됩니다
AUC 값은 분류기에 대한 전체 수치 값을 제공합니다. 일반적으로 AUC가 클수록 분류기가 우수하며 값은 [0, 1]



2.2입니다. 회귀 평가 지수분류 평가 지표와 회귀 평가 지표에 대한 자세한 설명과 Python 코드 구현
1) 해석 가능한 분산 점수

2) 평균 절대 오차 MAE(Mean Absolute Error)

3) MSE(평균 제곱 오차)
분류 평가 지표와 회귀 평가 지표에 대한 자세한 설명과 Python 코드 구현

분류 평가 지표와 회귀 평가 지표에 대한 자세한 설명과 Python 코드 구현4) 물류 회귀 손실

분류 평가 지표와 회귀 평가 지표에 대한 자세한 설명과 Python 코드 구현5) 일관성 평가 - 피어슨 상관 계수 방법
분류 평가 지표와 회귀 평가 지표에 대한 자세한 설명과 Python 코드 구현
파이썬 코드 구현

from sklearn.metrics import log_loss
log_loss(y_true, y_pred)from scipy.stats import pearsonr
pearsonr(rater1, rater2)from sklearn.metrics import cohen_kappa_score
cohen_kappa_score(rater1, rater2)

위 내용은 분류 평가 지표와 회귀 평가 지표에 대한 자세한 설명과 Python 코드 구현의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.
详细讲解Python之Seaborn(数据可视化)详细讲解Python之Seaborn(数据可视化)Apr 21, 2022 pm 06:08 PM

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于Seaborn的相关问题,包括了数据可视化处理的散点图、折线图、条形图等等内容,下面一起来看一下,希望对大家有帮助。

详细了解Python进程池与进程锁详细了解Python进程池与进程锁May 10, 2022 pm 06:11 PM

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于进程池与进程锁的相关问题,包括进程池的创建模块,进程池函数等等内容,下面一起来看一下,希望对大家有帮助。

Python自动化实践之筛选简历Python自动化实践之筛选简历Jun 07, 2022 pm 06:59 PM

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于简历筛选的相关问题,包括了定义 ReadDoc 类用以读取 word 文件以及定义 search_word 函数用以筛选的相关内容,下面一起来看一下,希望对大家有帮助。

归纳总结Python标准库归纳总结Python标准库May 03, 2022 am 09:00 AM

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于标准库总结的相关问题,下面一起来看一下,希望对大家有帮助。

国产开源MoE指标炸裂:GPT-4级别能力,API价格仅百分之一国产开源MoE指标炸裂:GPT-4级别能力,API价格仅百分之一May 07, 2024 pm 05:34 PM

最新国产开源MoE大模型,刚刚亮相就火了。DeepSeek-V2性能达GPT-4级别,但开源、可免费商用、API价格仅为GPT-4-Turbo的百分之一。因此一经发布,立马引发不小讨论。图片通过公布的性能指标来看,DeepSeekV2的中文综合能力超越一众开源模型,同时GPT-4Turbo、文快4.0等闭源模型同处第一梯队。英文综合能力也和LLaMA3-70B同处第一梯队,并且超过了同是MoE的Mixtral8x22B。在知识、数学、推理、编程等方面也表现出不错性能。并支持128K上下文。图片这

分享10款高效的VSCode插件,总有一款能够惊艳到你!!分享10款高效的VSCode插件,总有一款能够惊艳到你!!Mar 09, 2021 am 10:15 AM

VS Code的确是一款非常热门、有强大用户基础的一款开发工具。本文给大家介绍一下10款高效、好用的插件,能够让原本单薄的VS Code如虎添翼,开发效率顿时提升到一个新的阶段。

python中文是什么意思python中文是什么意思Jun 24, 2019 pm 02:22 PM

pythn的中文意思是巨蟒、蟒蛇。1989年圣诞节期间,Guido van Rossum在家闲的没事干,为了跟朋友庆祝圣诞节,决定发明一种全新的脚本语言。他很喜欢一个肥皂剧叫Monty Python,所以便把这门语言叫做python。

Python数据类型详解之字符串、数字Python数据类型详解之字符串、数字Apr 27, 2022 pm 07:27 PM

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于数据类型之字符串、数字的相关问题,下面一起来看一下,希望对大家有帮助。

See all articles

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

AI Hentai Generator

AI Hentai Generator

AI Hentai를 무료로 생성하십시오.

뜨거운 도구

PhpStorm 맥 버전

PhpStorm 맥 버전

최신(2018.2.1) 전문 PHP 통합 개발 도구

Dreamweaver Mac版

Dreamweaver Mac版

시각적 웹 개발 도구

SecList

SecList

SecLists는 최고의 보안 테스터의 동반자입니다. 보안 평가 시 자주 사용되는 다양한 유형의 목록을 한 곳에 모아 놓은 것입니다. SecLists는 보안 테스터에게 필요할 수 있는 모든 목록을 편리하게 제공하여 보안 테스트를 더욱 효율적이고 생산적으로 만드는 데 도움이 됩니다. 목록 유형에는 사용자 이름, 비밀번호, URL, 퍼징 페이로드, 민감한 데이터 패턴, 웹 셸 등이 포함됩니다. 테스터는 이 저장소를 새로운 테스트 시스템으로 간단히 가져올 수 있으며 필요한 모든 유형의 목록에 액세스할 수 있습니다.

DVWA

DVWA

DVWA(Damn Vulnerable Web App)는 매우 취약한 PHP/MySQL 웹 애플리케이션입니다. 주요 목표는 보안 전문가가 법적 환경에서 자신의 기술과 도구를 테스트하고, 웹 개발자가 웹 응용 프로그램 보안 프로세스를 더 잘 이해할 수 있도록 돕고, 교사/학생이 교실 환경 웹 응용 프로그램에서 가르치고 배울 수 있도록 돕는 것입니다. 보안. DVWA의 목표는 다양한 난이도의 간단하고 간단한 인터페이스를 통해 가장 일반적인 웹 취약점 중 일부를 연습하는 것입니다. 이 소프트웨어는

MinGW - Windows용 미니멀리스트 GNU

MinGW - Windows용 미니멀리스트 GNU

이 프로젝트는 osdn.net/projects/mingw로 마이그레이션되는 중입니다. 계속해서 그곳에서 우리를 팔로우할 수 있습니다. MinGW: GCC(GNU Compiler Collection)의 기본 Windows 포트로, 기본 Windows 애플리케이션을 구축하기 위한 무료 배포 가능 가져오기 라이브러리 및 헤더 파일로 C99 기능을 지원하는 MSVC 런타임에 대한 확장이 포함되어 있습니다. 모든 MinGW 소프트웨어는 64비트 Windows 플랫폼에서 실행될 수 있습니다.