이번에는 Python에서 행렬을 목록으로 변환하는 방법을 보여드리겠습니다. Python에서 행렬을 목록으로 변환할 때 주의사항은 무엇인가요? 실제 사례를 살펴보겠습니다.
이 글에서는 주로 Python의 numpy 라이브러리에 있는 일부 기능을 소개하고, 쉽게 검색할 수 있도록 백업해 두었습니다.
(1) 행렬을 리스트로 변환하는 함수: numpy.matrix.tolist()
리스트 리스트 반환
Examples
>>> x = np.matrix(np.arange(12).reshape((3,4))); x matrix([[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11]]) >>> x.tolist() [[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]]
(2) 배열을 리스트로 변환하는 함수: numpy. ndarray.tolist()
참고: (배열은 다시 생성될 수 있습니다. a=np.array(a.tolist()).
Examples> > () 행렬의 표준 편차를 계산합니다. 또는 배열:
Examples>>>
>>> a = np.array([1, 2]) >>> a.tolist() [1, 2] >>> a = np.array([[1, 2], [3, 4]]) >>> list(a) [array([1, 2]), array([3, 4])] >>> a.tolist() [[1, 2], [3, 4]]
(5) numpy.newaxis는 배열에 차원을 추가합니다:
예: >>> a = np.array([[1, 2], [3, 4]]) #对所有元素求均值
>>> np.mean(a)
2.5
>>> np.mean(a, axis=0) #对每一列求均值
array([ 2., 3.])
>>> np.mean(a, axis=1) #对每一行求均值
array([ 1.5, 3.5])
>>> a = np.array([[1, 2], [3, 4]]) #对所有元素求标准差
>>> np.std(a)
1.1180339887498949
>>> np.std(a, axis=0) #对每一列求标准差
array([ 1., 1.])
>>> np.std(a, axis=1) #对每一行求标准差
array([ 0.5, 0.5])
( 6) numpy.random.shuffle(index):
dataset(array)의 순서 섞기:
예:
>>> a=np.array([[1,2,3],[4,5,6],[7,8,9]]) #先输入3行2列的数组a >>> b=a[:,:2] >>> b.shape #当数组的行与列都大于1时,不需增加维度 (3, 2) >>> c=a[:,2] >>> c.shape #可以看到,当数组只有一列时,缺少列的维度 (3,) >>> c array([3, 6, 9])
(7)
2차원 배열최대값과 최소값 계산 특정 행 또는 열:>>> d=a[:,2,np.newaxis] #np.newaxis实现增加列的维度
>>> d
array([[3],
[6],
[9]])
>>> d.shape #d的维度成了3行1列(3,1)
(3, 1)
>>> e=a[:,2,None] #None与np.newaxis实现相同的功能
>>> e
array([[3],
[6],
[9]])
>>> e.shape
(3, 1)
(8) 배열에 열 추가: np.hstack()
>>> index = [i for i in range(10)] >>> index [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] >>> np.random.shuffle(index) >>> index [7, 9, 3, 0, 4, 1, 5, 2, 8, 6]
보시다시피 n은 2차원이고 l은 1차원입니다. np.hstack()을 직접 호출하면 차원이 다르다는 오류가 발생합니다. >>> import numpy as np
>>> a = np.arange(15).reshape(5,3) #构造一个5行3列的二维数组
>>> a
array([[ 0, 1, 2],
[ 3, 4, 5],
[ 6, 7, 8],
[ 9, 10, 11],
[12, 13, 14]])
>>> b = a[:,0].min() ##取第0列的最小值,其他列同理
>>> b
0
>>> c = a[0,:].max() ##取第0行的最大值,其他行同理
>>> c
2
해결책은 l을 2차원으로 변경하는 것입니다. (5)의 방법을 사용할 수 있습니다. n = np.array(np.random.randn(4,2))
n
Out[153]:
array([[ 0.17234 , -0.01480043],
[-0.33356669, -1.33565616],
[-1.11680009, 0.64230761],
[-0.51233174, -0.10359941]])
l = np.array([1,2,3,4])
l
Out[155]: array([1, 2, 3, 4])
l.shape
Out[156]: (4,)
열별로 빈 목록에 값을 추가하는 방법에 대해 이야기해 보겠습니다. n = np.hstack((n,l))
ValueError: all the input arrays must have same number of dimensions
지속적으로 업데이트 중... ...
이 기사의 사례를 읽으신 후 방법을 마스터하셨다고 생각합니다. 더 흥미로운 정보를 보려면 PHP 중국어 웹사이트의 다른 관련 기사를 주목하세요! 추천 도서:
파이썬에서 목록, 배열, 행렬을 서로 변환하는 방법파이썬에서 최대 공약수를 찾는 방법
위 내용은 Python에서 행렬을 목록으로 변환하는 방법의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

thedifferencebet weenaforloopandawhileloopinpythonisthataforloopisusured wherleationsisknortiStiskNowninAdvance, whileLeOpisUssed whileLoopisUssedStoBeCheckedThoBeCheckedTherfeTefeateThinumberofiTeRations.1) forloopsareIdealFerenceCecenceS

Python에서는 반복의 수가 알려진 경우에 루프가 적합한 반면, 반복 횟수가 알려지지 않고 더 많은 제어가 필요한 경우 루프는 적합합니다. 1) 루프의 경우 간결하고 피해자 코드가있는 목록, 문자열 등과 같은 시퀀스에 적합합니다. 2) 조건에 따라 루프를 제어하거나 사용자 입력을 기다릴 때 루프가 더 적절하지만 무한 루프를 피하기 위해주의를 기울여야합니다. 3) 성능 측면에서 For 루프는 약간 빠르지 만 차이는 일반적으로 크지 않습니다. 올바른 루프 유형을 선택하면 코드의 효율성과 가독성이 향상 될 수 있습니다.

파이썬에서 목록은 5 가지 방법을 통해 병합 될 수 있습니다. 1) 단순하고 직관적 인 연산자를 사용하여 작은 목록에 적합합니다. 2) Extend () 메소드를 사용하여 자주 업데이트 해야하는 목록에 적합한 원본 목록을 직접 수정하십시오. 3) 목록 분석 공식, 요소에 대한 간결하고 운영; 4) 효율적인 메모리에 IterTools.chain () 함수를 사용하여 대형 데이터 세트에 적합합니다. 5) * 연산자 및 Zip () 함수를 사용하여 요소를 짝을 이루어야하는 장면에 적합합니다. 각 방법에는 특정 용도 및 장점 및 단점이 있으며 선택할 때 프로젝트 요구 사항 및 성능을 고려해야합니다.

Forloopsareusedwhendumberofiterationsisknown, whileloopsareusediltilaconditionismet.1) forloopsareIdealfecquenceslikelists, idingsyntax likes'forfruitinfruits : print (fruit) '

Toconcatenatealistoflistsinpython, usextend, listcomprehensions, itertools.chain, orrecursiveFunctions.1) extendMethodistRaightForwardButverbose.2) ListComprehensionsArecisancisancisancisancisanceciancectionforlargerdatasets.3) itertools.chainismory-lefforforlargedas

Tomergelistsinpython, youcanusethe operator, extendmethod, listcomprehension, oritertools.chain, 각각은 각각의 지위를 불러 일으킨다

Python 3에서는 다양한 방법을 통해 두 개의 목록을 연결할 수 있습니다. 1) 작은 목록에 적합하지만 큰 목록에는 비효율적입니다. 2) 메모리 효율이 높지만 원래 목록을 수정하는 큰 목록에 적합한 확장 방법을 사용합니다. 3) 원래 목록을 수정하지 않고 여러 목록을 병합하는 데 적합한 * 운영자 사용; 4) 메모리 효율이 높은 대형 데이터 세트에 적합한 itertools.chain을 사용하십시오.

join () 메소드를 사용하는 것은 Python의 목록에서 문자열을 연결하는 가장 효율적인 방법입니다. 1) join () 메소드를 사용하여 효율적이고 읽기 쉽습니다. 2)주기는 큰 목록에 비효율적으로 운영자를 사용합니다. 3) List Comprehension과 Join ()의 조합은 변환이 필요한 시나리오에 적합합니다. 4) READE () 방법은 다른 유형의 감소에 적합하지만 문자열 연결에 비효율적입니다. 완전한 문장은 끝납니다.


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

에디트플러스 중국어 크랙 버전
작은 크기, 구문 강조, 코드 프롬프트 기능을 지원하지 않음

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

SublimeText3 영어 버전
권장 사항: Win 버전, 코드 프롬프트 지원!

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.